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Abstract—The advanced metering infrastructure (AMI) is a
crucial component of the smart grid, replacing traditional analog
devices with computerized smart meters. Smart meters have not
only allowed for efficient management of many end-users, but
also have made AMI an attractive target for remote exploits and
local physical tampering with the end goal of stealing energy.
While smart meters posses multiple sensors and data sources
that can indicate energy theft, in practice, the individual methods
exhibit many false positives. In this paper, we present AMIDS, an
AMI intrusion detection system that uses information fusion to
combine the sensors and consumption data from a smart meter
to more accurately detect energy theft. AMIDS combines meter
audit logs of physical and cyber events with consumption data
to more accurately model and detect theft-related behavior. Our
experimental results on normal and anomalous load profiles show
that AMIDS can identify energy theft efforts with high accuracy.
Furthermore, AMIDS correctly identified legitimate load profile
changes that more elementary analyses classified as malicious.

I. INTRODUCTION

The Advanced Metering Infrastructure (AMI) is changing
the way electricity is measured, consumed, and even dis-
tributed. Digital smart meters remotely report not only fine-
grained energy consumption data, but also logs of events indi-
cating malfunctions, misconfigurations, and potential physical
tampering. These monitoring capabilities, coupled with large-
scale AMI data aggregation promise to significantly mitigate
the problem of energy theft, an especially pervasive problem
in developing countries.

However, the recent nation-wide AMI deployment effort
has had quite an opposite effect by fueling concerns about
new ways to steal power, e.g., through remote smart meter
compromise. For instance, in 2009, the FBI reported a wide
and organized energy theft attempt that may have cost up
to 400 million dollars annually to a utility following an
AMI deployment [1]. Indeed, AMI significantly increases the
attack surface that utilities have to protect by introducing new
cyber threats on physically-accessible devices [18]. Penetration
testing efforts have shown vulnerabilities in smart meters that
could lead to stealthy energy fraud. Additionally, remote meter
reading eliminates the monthly visit by technicians to record
consumptions and to visually inspect meters.

As a result, the need for an efficient monitoring solution
to detect energy theft attempts in AMI has never been more
critical. In this paper, we introduce AMIDS, an integrated
cyber-physical intrusion detection system to identify malicious
energy theft attempts. AMIDS differs from previous solutions
by evaluating multiple AMI data sources under a combination
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of techniques to detect theft-related behavior while reducing
false positives. In particular, AMIDS uses an attack graph
based information fusion technique to conceptually combine
collected evidences from three types of AMI-specific informa-
tion sources: 1) cyber-side network- and host-based intrusion
detection systems; 2) on-meter anti-tampering sensors; and 3)
power measurement-based anomalous consumption detectors
through nonintrusive load monitoring (NILM). The main con-
tributions of this paper are as follows:

• We present an information fusion solution which makes
use of an AMI-specific attack graph to identify energy
theft attempts with minimum number of false positives.

• We leverage data mining techniques to identify energy
theft through nonintrusive load monitoring. We designed
two algorithms: a supervised approach that can identify
individual appliance consumption and an unsupervised
approach that learns by clustering load events.

• We build a realistic household load simulator that we used
to evaluate the different individual detection techniques
and the information fusion solution through the injection
of realistic energy theft attacks.

II. RELATED WORK

Several solutions to energy theft have been proposed re-
cently [9]. A popular approach has been to apply support-
vector machine (SVM) to energy consumption profiles [8],
[20]. This approach consists of training an SVM from a
historical dataset and then testing the SVM on a different
dataset to find anomalies in the customer energy consumption.
[8] reports an accuracy of 98.4% based on a training set of
440 instances and a testing set of 220 customers. The same
authors extended their approach in [10] to leverage a hybrid
neural-network model and encoding technique in order to
automatically set the many parameters required by the model.

A different approach is shown in [4]. Here, the focus is
on identifying problematic metering installations, e.g., due to
malfunction or energy theft, through a central observer meter
in each neighborhood. Neighborhood energy use is compared
with individual customer loads using a model of N linearly
independent equations. This model is solved using matrix
inversion and recursive statistical methods, i.e., least squares.
This approach is limited by its reliance on linear independence
of equations and zero resistance of power lines.

A radically different approach is taken in [7] by using
a harmonic generator to actively deteriorate appliances of
customers who steal energy. Sensors monitor consumption
values, identify suspicious non-technical losses, disconnect
genuine customers, operate the harmonic generator for few
seconds, and reconnect everyone. An important limitation of



this solution is that if on-meter harmonic sensors fail, damage
to genuine customers could make the cost of false positives
prohibitively high.

III. THREAT MODEL
There are a variety of known techniques for energy theft

that we assume an adversary may attempt against an AMIDS-
equipped AMI deployment. At the level of customer homes,
the most common techniques involve either tapping an external
source such as a neighbor or distribution feeder, or meter
tampering to inhibit proper recording of consumption. The
latter may be done by applying magnets to interfere with
instruments such as electromechanical rotors or solid state
current transformers, or by reversing or disconnecting meters
from their sockets. At the grid level, energy thieves usually
bypass meters by wiring power hungry appliances directly to
the grid, or connecting their entire electric system to a feeder
with a pirate transformer.

Addressing such physical tampering-related issues has been
one of the benefits of AMI. Indeed, smart meters can detect
and report certain tampering attempts, and solid-state metering
mitigates some attack techniques targeting electromechanical
meters. But, the addition of network communication and smart
devices to the grid has also brought new attack vectors. For
example, it is trivial for a customer to jam meter wireless
communications to suppress physical tampering alarms. Cyber
attack techniques against AMI have been recently studied
[16], [17] and include interrupting measurements, gaining
privileged access to the meter firmware, tampering with the
meter storage, and intercepting the meter communications to
block or alter consumption values being reported.

To summarize, we classify energy theft techniques into
three categories: 1) physical attacks, 2) cyber attacks, and
3) data attacks having an impact on power measurements.
Note that attacks in the third categories are made possible
through attacks from the first and second categories. The
different attacks are detailed in Table I. The table is used in
the following sections as a guide to ensure a comprehensive
coverage of the threats from the described detection solutions.
Moreover, we draw from these attack techniques to simulate
attack scenarios in order to evaluate AMIDS.

IV. INDIVIDUAL ENERGY THEFT DETECTION
MECHANISMS

A. Physical Tampering Detection Solutions

Smart meters are already equipped with sensors to collect
and log potential physical tampering events such as removal of
the meter cover and physical bumping of the meter. However,
a problem with some such alerts is the high rate of false
positives. For example, a heavy truck passing near a meter
can trigger the tilt alert [15]. Thus, we include such tamper
detection sensors in our solution to detect physical attacks, but
false positive are reduced by combining tampering alerts with
additional data sources covered in the following two sections.
From our threat models described in Table I, meter tamper
alerts provide the following observations:

• Observation O8: anti-tampering alert to detect Ap1
• Observation O9: reverse rotation alert to detect Ap2
• Observation O10: disconnect alert to detect Ap3
• Observation O11: anti-tampering alert to detect Ap4

TABLE I
MAPPING BETWEEN ATTACKS AND DETECTION TECHNIQUES

Id Attack technique
Cyber

Ac1 Compromise meters through remote network exploit
Ac2 Modify the firmware/storage on meters
Ac3 Steal credentials to login to meters
Ac4 Exhaust CPU/memory
Ac5 Intercept/alter communications
Ac6 Flood the NAN bandwidth

Physical
Ap1 Break into the meter
Ap2 Reverse the meter
Ap3 Disconnect the meter
Ap4 Physically extract the password
Ap5 Abuse optical port to gain access to meters
Ap6 Bypass meters to remove loads from measurement

Effect on power measurements
Ad1 Stop reporting entire consumption
Ad2 Remove large applicances from measurement
Ad3 Cut the report by a given percentage
Ad4 Alter appliance load profile to hide large loads
Ad5 Report zero consumption
Ad6 Report negative consumption (act as a generator)

B. Cyber Intrusion Detection Systems
To address the challenge of detecting cyber attacks intro-

duced by AMI, AMIDS leverages two complementary intru-
sion detection systems that can be implemented and deployed
via firmware upgrade: 1) a remote cumulative attestation
kernel (CAK) in meters [13], and 2) a specification-based net-
work intrusion detection systems deployed on access points or
dedicated sensors in the local neighborhood area network [5].
A CAK is a lightweight solution for embedded systems such
as meters, which records an unbroken sequence of application
firmware upgrades. This audit log can be remotely queried by
a verifier to detect firmware tampering, e.g., due to remote ex-
ploitation. The specification-based network intrusion detection
system monitors traffic among meters and access points across
layers to ensure that devices are running in a secure state and
their operations respect a specified security policy. It does this
by constraining communications made using the ANSI C12.22
standard protocol, thus guaranteeing that all policy violations
will be detected. The soundness of these constraints can be
formally verified.

Our cyber intrusion detection system provides the follow-
ing observation capabilities to cover attacks from our threat
models described in Table I:

• Observation O1: spec.-based network monitoring to detect Ac1
• Observation O2: remote firmware attestation to detect Ac2
• Observation O3: spec.-based monitoring and meter authentica-

tion logs to detect Ac3
• Observation O4: spec.-based monitoring and meter responsive-

ness to detect Ac4
• Observation O5: spec.-based monitoring to detect Ac5
• Observation O6: spec.-based monitoring to detect Ac6
• Observation O7: remote firmware attestation to detect Ap5

C. Power Measurement-based Anomaly Detection
The third class of observations to detect theft-related behav-

ior leverages the fine-grained load profile data available from
smart meters. In particular, individual load profile events are
analyzed to identify appliances being turned on and off. The
results are used to create a usage profile for each household.
These profiles will be used later to detect changes in house-
hold energy consumption patterns. In particular, we introduce
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Fig. 1. A Sample 4-Day Load Profile and Identified Edges

two power measurement-based detection solutions based on
supervised and unsupervised machine learning techniques. The
algorithms are based on Naive Bayes learning that employs
the method of maximum likelihood and is known to be one
of the most effective and efficient classification algorithms in
complex real-world situations.

We review the Naive Bayes algorithm briefly, and then
discuss our two load-based energy theft detection solutions.
Formally, the probability model for a classifier is a conditional
model Pr(C|F1,F2, · · · ,Fn) over a dependent class variable C
that takes on a binary value, 0 (legitimate power consumer)
and 1 (anomalous power measurements). Fi represents the i-th
feature. Using a Bayes’ theorem,

Pr(C|F1,F2, · · · ,Fn) =
Pr(C) ·Pr(F1,F2, · · · ,Fn|C)

P(F1,F2, · · · ,Fn)
(1)

can be derived, and given the independence assumption,

Pr(C|F1,F2, · · · ,Fn) =
1
Z

P(C) ·
n

’
i=1

Pr(Fi|C), (2)

where Z is a constant scaling factor representing the evidence.
Given the above probability model, the Bayesian classifier
combines this model with a decision rule. In particular, the
hypothesis with the maximum a posteriori is picked:

C( f1, f2, · · · , fn) = arg max
c2{0,1}

P(C = c) ·
n

’
i=1

P(Fi = fi|C = c).

(3)
Supervised Anomaly Detection. The supervised technique

labels each on or off edge in the load profile according to
its appliance of origin. The algorithm then determines which
appliances a 2 A are missing from power measurements, i.e., if
the mode of theft bypassed some appliances around the meter.
The algorithm has two learning phases. First, a database of
appliance signatures is created and stored for use by a Non-
Intrusive Load Monitor (NILM). The NILM uses this database
to identify appliance usage in the home over time. Second,
AMIDS learns the daily usage frequencies of each individual
appliance using appliance data provided by the NILM. More
specifically, the power consumption time series are analyzed
and the (edges) E = (et0 ,et1 , · · · ,etn) corresponding to on/off
events are identified and recorded. Each edge magnitude
represents one or more appliance events. Figure 1 shows 1) a
sample power consumption time series of a single household
generated by our implementation that simulated turn on/off
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Fig. 2. Learned Normal Appliance Usage Profiles

incidents of 25 different home appliances, and 2) the identified
edges within the same trace. The NILM works by solving the
following binary integer programming problem to determine
which devices contributed to a given edge.

min BT x
s.t. Qx  eti +d

�Qx  �eti +d
x � 0

(4)

where B = [1,1, · · · ,1]2·|A|⇥1; Q = [Qp;�Qp] , in which Qp
is an |A|-dimensional vector of power appliance consumption
profiles, and [a;b] represents the concatenation of the vectors
a and b. This integer programming problem is solved to
get the 2 · |A|-dimensional binary vector x, where an element
represents whether its corresponding appliance contributed to
the edge eti . Here, d is a small threshold value to account for
measurement noise. The objective of the optimization is to
minimize number of incidents per edge. This is a reasonable
assumption as many near-simultaneous appliance events are
unlikely [12].

Once the set of appliances contribution to each edge is
identified, AMIDS learns based on the daily frequency of each
appliance fa. Thus, over an n-day learning phase, a usage
profile matrix

Uhi =

0

BBB@

fa1,d1 fa2,d1 · · · fa|A|,d1

fa1,d2 fa2,d2 · · · fa|A|,d2
...

...
. . .

...
fa1,dn fa2,dn · · · fa|A|,dn

1

CCCA
(5)

per household hi is saved. Each column is then used to
calculate the probability mass distribution Phi,a j(v) v 2 Z that
appliance a j is used v times per day in household hi. This
completes the profiling phase. Figure 3 shows our implemen-
tation results: 1) home appliance usage frequency reports of a
single household over 20 days (each line represents a single
day); and 2) the empirical probability mass distribution of the
microwave usage frequency per day.

The calculated profiles (distributions) are used for anomaly
detection purposes with the Bayesian classifier. The objective
is to mark a given day-long smart meter measurements as
normal or anomalous based on that household’s profile. In
particular, the prior class probability P(C) in Equation (3)
can be obtained from existing energy theft data [2], and
the conditional distributions are obtained from the learned
profiles. Here, a features Fi is the daily usage frequency of
appliance i. Figure 3 shows our evaluation results for the
supervised detection of anomalous power measurements. In
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Fig. 3. Normal Day Profile and Classification Probability

particular, the first and second graphs show a normal trace for
a single household over a day and the posterior distribution
for individual appliances. As shown in the third and fourth
graphs, a corrupted measurement trace leads to a significant
reduction in the posterior distribution values (indicating that
the reported measurements are less likely to be normal).

We note that the use of NILMs along side smart meters has
raised privacy concerns [21]. Recent studies have shown that
NILMs can reveal home occupant behaviors [14], [19]. While
we defer the design of privacy-preserving protocols [23] for
our scheme to future work, we mention a practical measure to
mitigate leaks of most legitimate user’s consumption patterns.
Fine grained data for usage by load-based detection schemes
can be released only after physical or cyber tampering alarms
have been raised.
Unsupervised Anomaly Detection. The unsupervised de-
tector groups individual load events into clusters based on
their real-power magnitude. Thus, appliances with similar
load sizes will be placed in the same cluster. The resulting
individual clusters are more sensitive to load changes than the
net load. For example, bypassing a single appliance will have
a noticeable effect on the cluster containing the appliance,
even if the change in net load is very small. The unsupervised
learning algorithm proceeds as follows. Edge detection is first
used to extract a set of events f1, f2, . . . , fn (positive or negative
edges) from the load profile. K-means clustering is then done
based on individual event magnitudes, resulting in a set of
clusters C with c = { f1, f2, ..., f|c|} for all clusters c 2 C .
The number of clusters |C| is determined by maximizing the
average silhouette value s across all clusters.

s =
1

|C | Â
c2C

1
|c| Â

f 2c

b( f )�a( f )
max{b( f ),a( f )} (6)

Here, b( f ) is the Euclidean distance between f and all events
in other clusters, and a( f ) is the distance between f and all
events in its own cluster. Given an optimal clustering, the
upper and lower bounds on each cluster are found and used to
bucket events during normal operation. Bayesian classification
is then done over the distribution of bucketed data against the
clustering of the training data.

An example clustering of three datasets is shown in Figure 4
with four clusters formed from each dataset. The three datasets
are as follows. (1) The solid line shows the probability density
function (pdf) of events per day in each of four clusters from
training data. (2) The dashed line is the pdf of events in a
clustering of the same scenario with an HVAC system that
is 30% more efficient than the baseline. (3) The line with ⇥

where B = [1,1, · · · ,1]2·|A|⇥1; Q = [Qp;�Qp]1, in which Qp
is an |A|-dimensional vector that represent power consump-
tion profiles of individual home appliances. Consequently,
the above integer programming is solved to get the 2 · |A|-
dimensional binary vector x, in which each element represents
whether a particular appliance has contributed to the edge eti
through on/off incidents. d is a comparatively small threshold
value that accounts for the possible measurement noise. The
objective of the optimization is to minimize number of inci-
dents per edge. This is a reasonable assumption because the
probability that many appliances get turned on/off simultane-
ously is very low. Furthermore, according to our empirical
observations, lack of such minimization usually results in
many possible large appliance combinations for a given edge
magnitude.

Once the set of appliances contribution to each edge is
identified, AMIDS creates a daily basis profile of each house-
hold and calculates number of times each appliance is used fa
during individual days. Over an n-day learning phase, a usage
profile matrix

Uhi =

0

BBB@

fa1,d1 fa2,d1 · · · fa|A|,d1

fa1,d2 fa2,d2 · · · fa|A|,d2
...

...
. . .

...
fa1,dn fa2,dn · · · fa|A|,dn

1

CCCA
(5)

per household hi is saved. Each column is then used to
calculate the probability mass distribution Phi,a j(v) v 2 N
that denotes the probability that the appliance a j is used c
times per day in household hi. Calculation the aforementioned
distribution completes the profiling phase.

The calculated profiles (distributions) are used for anomaly
detection purposes using the Bayesian classifier algorithm.
The objective here is to mark a given day-long smart meter
measurements as normal or anomalous based on the profiles
for that particular household. In particular, the prior class prob-
ability P(C) in Equation (3) can be obtained from statistical
reports about energy theft [?], and the conditional distributions
are obtained from the learned profiles. To clarify, the features
Fi are essentially the daily usage frequency of individual home
appliances, i.e., one feature per appliance.

2) Unsupervised Anomaly Detection: Unlike the supervised
anomaly detection algorithm, the unsupervised detector does
not have appliance labels for events in the load profile. Instead,
it groups different load events by clustering on their real-
power magnitude. The intuition here is that each cluster
is an equivalency class of appliances, and the set of such
classes defines a fingerprint for consumption for a particular
residence. Of course, common energy theft scenarios should
deviate significantly from this fingerprint. For example, while
bypassing a large appliance around the meter might not affect
the net load enough to appear suspicious, it will cause a
noticeable reduction in the size of at least one cluster.

The unsupervised learning algorithm proceeds as follows.
Edge detection is first used to extract a set of events (positive
or negative edges) from the load profile. K-means clustering is
first done based on individual event magnitudes, resulting in
a set of clusters C with c = { f1, f2, ..., f|c|} for all clusters

1[a;b] represents the concatenation of the vectors a and b.
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c 2 C . The average silhouette measure is used to over an
entire clustering to determine the optimal number of clusters
as follows.

s =
1

|C | Â
c2C

1
|c| Â

f 2c

b( f )�a( f )
max{b( f ),a( f )} (6)

Where b( f ) is the dissimilarity between the event f and all
other events in other clusters, and a( f ) is the dissimilarity
between f and all other events in its own cluster. A silhouette
closer to 1 indicates a better clustering. Given an optimal
clustering of the unlabelled training data, the upper and lower
bounds on each cluster are found and used to bucket sample
data. Bayesian classification is then done over the distribution
of bucketed data against the clustering of the training data.

An example clustering of three datasets is shown in Fig-
ure 1. The solid line represents the pdf of events per day in
each of four clusters from training data. The dashed line is
the pdf of events in a clustering of the same scenario with
an HVAC system that is 30% more efficient than the baseline.
Finally, the line with ⇥ marks is the same scenario with the HVAC
bypassing the meter. As can be seen, the clustering of the malicious
test case differs significantly from the baseline and legitimate test
cases.

III. MULTI-SOURCE INFORMATION FUSIONS

We present an attack graph-based information fusion algorithm to
combine evidences about on-going attacks from multiple sources, i.e.,
detection algorithms. Figure 2 shows a simplified attack graph for an
AMI smart meter with the end malicious goal being a successful
energy theft. The attack graph is a state-based directed graph which
models various attack paths starting from the initial state s0 and
continues until the malicious end goal is achieved (represented by the
goal state sg) that is energy theft in this case. At each time instant,
the security state of the smart meter device (except the goal state) is
identified by the following two binary subvectors: 1) the attacker’s
current privilege over the meter that captures what the attacker can
do in the future and is either none ? or the administrative access
M according to configuration of the existing commercial meters;
and 2) the security consequences that captures the set of malicious
actions the attacker has already accomplished such as a modified
meter firmware or exhausted CPU on the meter.

where B = [1,1, · · · ,1]2·|A|⇥1; Q = [Qp;�Qp]1, in which Qp
is an |A|-dimensional vector that represent power consump-
tion profiles of individual home appliances. Consequently,
the above integer programming is solved to get the 2 · |A|-
dimensional binary vector x, in which each element represents
whether a particular appliance has contributed to the edge eti
through on/off incidents. d is a comparatively small threshold
value that accounts for the possible measurement noise. The
objective of the optimization is to minimize number of inci-
dents per edge. This is a reasonable assumption because the
probability that many appliances get turned on/off simultane-
ously is very low. Furthermore, according to our empirical
observations, lack of such minimization usually results in
many possible large appliance combinations for a given edge
magnitude.
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identified, AMIDS creates a daily basis profile of each house-
hold and calculates number of times each appliance is used fa
during individual days. Over an n-day learning phase, a usage
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per household hi is saved. Each column is then used to
calculate the probability mass distribution Phi,a j(v) v 2 N
that denotes the probability that the appliance a j is used c
times per day in household hi. Calculation the aforementioned
distribution completes the profiling phase.

The calculated profiles (distributions) are used for anomaly
detection purposes using the Bayesian classifier algorithm.
The objective here is to mark a given day-long smart meter
measurements as normal or anomalous based on the profiles
for that particular household. In particular, the prior class prob-
ability P(C) in Equation (3) can be obtained from statistical
reports about energy theft [?], and the conditional distributions
are obtained from the learned profiles. To clarify, the features
Fi are essentially the daily usage frequency of individual home
appliances, i.e., one feature per appliance.

2) Unsupervised Anomaly Detection: Unlike the supervised
anomaly detection algorithm, the unsupervised detector does
not have appliance labels for events in the load profile. Instead,
it groups different load events by clustering on their real-
power magnitude. The intuition here is that each cluster
is an equivalency class of appliances, and the set of such
classes defines a fingerprint for consumption for a particular
residence. Of course, common energy theft scenarios should
deviate significantly from this fingerprint. For example, while
bypassing a large appliance around the meter might not affect
the net load enough to appear suspicious, it will cause a
noticeable reduction in the size of at least one cluster.

The unsupervised learning algorithm proceeds as follows.
Edge detection is first used to extract a set of events (positive
or negative edges) from the load profile. K-means clustering is
first done based on individual event magnitudes, resulting in
a set of clusters C with c = { f1, f2, ..., f|c|} for all clusters

1[a;b] represents the concatenation of the vectors a and b.
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c 2 C . The average silhouette measure is used to over an
entire clustering to determine the optimal number of clusters
as follows.

s =
1

|C | Â
c2C

1
|c| Â

f 2c

b( f )�a( f )
max{b( f ),a( f )} (6)

Where b( f ) is the dissimilarity between the event f and all
other events in other clusters, and a( f ) is the dissimilarity
between f and all other events in its own cluster. A silhouette
closer to 1 indicates a better clustering. Given an optimal
clustering of the unlabelled training data, the upper and lower
bounds on each cluster are found and used to bucket sample
data. Bayesian classification is then done over the distribution
of bucketed data against the clustering of the training data.

An example clustering of three datasets is shown in Fig-
ure 1. The solid line represents the pdf of events per day in
each of four clusters from training data. The dashed line is
the pdf of events in a clustering of the same scenario with
an HVAC system that is 30% more efficient than the baseline.
Finally, the line with ⇥ marks is the same scenario with the HVAC
bypassing the meter. As can be seen, the clustering of the malicious
test case differs significantly from the baseline and legitimate test
cases.

III. MULTI-SOURCE INFORMATION FUSIONS

We present an attack graph-based information fusion algorithm to
combine evidences about on-going attacks from multiple sources, i.e.,
detection algorithms. Figure 2 shows a simplified attack graph for an
AMI smart meter with the end malicious goal being a successful
energy theft. The attack graph is a state-based directed graph which
models various attack paths starting from the initial state s0 and
continues until the malicious end goal is achieved (represented by the
goal state sg) that is energy theft in this case. At each time instant,
the security state of the smart meter device (except the goal state) is
identified by the following two binary subvectors: 1) the attacker’s
current privilege over the meter that captures what the attacker can
do in the future and is either none ? or the administrative access
M according to configuration of the existing commercial meters;
and 2) the security consequences that captures the set of malicious
actions the attacker has already accomplished such as a modified
meter firmware or exhausted CPU on the meter.

where B = [1,1, · · · ,1]2·|A|⇥1; Q = [Qp;�Qp]1, in which Qp
is an |A|-dimensional vector that represent power consump-
tion profiles of individual home appliances. Consequently,
the above integer programming is solved to get the 2 · |A|-
dimensional binary vector x, in which each element represents
whether a particular appliance has contributed to the edge eti
through on/off incidents. d is a comparatively small threshold
value that accounts for the possible measurement noise. The
objective of the optimization is to minimize number of inci-
dents per edge. This is a reasonable assumption because the
probability that many appliances get turned on/off simultane-
ously is very low. Furthermore, according to our empirical
observations, lack of such minimization usually results in
many possible large appliance combinations for a given edge
magnitude.

Once the set of appliances contribution to each edge is
identified, AMIDS creates a daily basis profile of each house-
hold and calculates number of times each appliance is used fa
during individual days. Over an n-day learning phase, a usage
profile matrix

Uhi =

0

BBB@

fa1,d1 fa2,d1 · · · fa|A|,d1

fa1,d2 fa2,d2 · · · fa|A|,d2
...
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per household hi is saved. Each column is then used to
calculate the probability mass distribution Phi,a j(v) v 2 N
that denotes the probability that the appliance a j is used c
times per day in household hi. Calculation the aforementioned
distribution completes the profiling phase.

The calculated profiles (distributions) are used for anomaly
detection purposes using the Bayesian classifier algorithm.
The objective here is to mark a given day-long smart meter
measurements as normal or anomalous based on the profiles
for that particular household. In particular, the prior class prob-
ability P(C) in Equation (3) can be obtained from statistical
reports about energy theft [?], and the conditional distributions
are obtained from the learned profiles. To clarify, the features
Fi are essentially the daily usage frequency of individual home
appliances, i.e., one feature per appliance.

2) Unsupervised Anomaly Detection: Unlike the supervised
anomaly detection algorithm, the unsupervised detector does
not have appliance labels for events in the load profile. Instead,
it groups different load events by clustering on their real-
power magnitude. The intuition here is that each cluster
is an equivalency class of appliances, and the set of such
classes defines a fingerprint for consumption for a particular
residence. Of course, common energy theft scenarios should
deviate significantly from this fingerprint. For example, while
bypassing a large appliance around the meter might not affect
the net load enough to appear suspicious, it will cause a
noticeable reduction in the size of at least one cluster.

The unsupervised learning algorithm proceeds as follows.
Edge detection is first used to extract a set of events (positive
or negative edges) from the load profile. K-means clustering is
first done based on individual event magnitudes, resulting in
a set of clusters C with c = { f1, f2, ..., f|c|} for all clusters

1[a;b] represents the concatenation of the vectors a and b.
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c 2 C . The average silhouette measure is used to over an
entire clustering to determine the optimal number of clusters
as follows.

s =
1

|C | Â
c2C

1
|c| Â

f 2c

b( f )�a( f )
max{b( f ),a( f )} (6)

Where b( f ) is the dissimilarity between the event f and all
other events in other clusters, and a( f ) is the dissimilarity
between f and all other events in its own cluster. A silhouette
closer to 1 indicates a better clustering. Given an optimal
clustering of the unlabelled training data, the upper and lower
bounds on each cluster are found and used to bucket sample
data. Bayesian classification is then done over the distribution
of bucketed data against the clustering of the training data.

An example clustering of three datasets is shown in Fig-
ure 1. The solid line represents the pdf of events per day in
each of four clusters from training data. The dashed line is
the pdf of events in a clustering of the same scenario with
an HVAC system that is 30% more efficient than the baseline.
Finally, the line with ⇥ marks is the same scenario with the HVAC
bypassing the meter. As can be seen, the clustering of the malicious
test case differs significantly from the baseline and legitimate test
cases.

III. MULTI-SOURCE INFORMATION FUSIONS

We present an attack graph-based information fusion algorithm to
combine evidences about on-going attacks from multiple sources, i.e.,
detection algorithms. Figure 2 shows a simplified attack graph for an
AMI smart meter with the end malicious goal being a successful
energy theft. The attack graph is a state-based directed graph which
models various attack paths starting from the initial state s0 and
continues until the malicious end goal is achieved (represented by the
goal state sg) that is energy theft in this case. At each time instant,
the security state of the smart meter device (except the goal state) is
identified by the following two binary subvectors: 1) the attacker’s
current privilege over the meter that captures what the attacker can
do in the future and is either none ? or the administrative access
M according to configuration of the existing commercial meters;
and 2) the security consequences that captures the set of malicious
actions the attacker has already accomplished such as a modified
meter firmware or exhausted CPU on the meter.

where B = [1,1, · · · ,1]2·|A|⇥1; Q = [Qp;�Qp]1, in which Qp
is an |A|-dimensional vector that represent power consump-
tion profiles of individual home appliances. Consequently,
the above integer programming is solved to get the 2 · |A|-
dimensional binary vector x, in which each element represents
whether a particular appliance has contributed to the edge eti
through on/off incidents. d is a comparatively small threshold
value that accounts for the possible measurement noise. The
objective of the optimization is to minimize number of inci-
dents per edge. This is a reasonable assumption because the
probability that many appliances get turned on/off simultane-
ously is very low. Furthermore, according to our empirical
observations, lack of such minimization usually results in
many possible large appliance combinations for a given edge
magnitude.

Once the set of appliances contribution to each edge is
identified, AMIDS creates a daily basis profile of each house-
hold and calculates number of times each appliance is used fa
during individual days. Over an n-day learning phase, a usage
profile matrix
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per household hi is saved. Each column is then used to
calculate the probability mass distribution Phi,a j(v) v 2 N
that denotes the probability that the appliance a j is used c
times per day in household hi. Calculation the aforementioned
distribution completes the profiling phase.

The calculated profiles (distributions) are used for anomaly
detection purposes using the Bayesian classifier algorithm.
The objective here is to mark a given day-long smart meter
measurements as normal or anomalous based on the profiles
for that particular household. In particular, the prior class prob-
ability P(C) in Equation (3) can be obtained from statistical
reports about energy theft [?], and the conditional distributions
are obtained from the learned profiles. To clarify, the features
Fi are essentially the daily usage frequency of individual home
appliances, i.e., one feature per appliance.

2) Unsupervised Anomaly Detection: Unlike the supervised
anomaly detection algorithm, the unsupervised detector does
not have appliance labels for events in the load profile. Instead,
it groups different load events by clustering on their real-
power magnitude. The intuition here is that each cluster
is an equivalency class of appliances, and the set of such
classes defines a fingerprint for consumption for a particular
residence. Of course, common energy theft scenarios should
deviate significantly from this fingerprint. For example, while
bypassing a large appliance around the meter might not affect
the net load enough to appear suspicious, it will cause a
noticeable reduction in the size of at least one cluster.

The unsupervised learning algorithm proceeds as follows.
Edge detection is first used to extract a set of events (positive
or negative edges) from the load profile. K-means clustering is
first done based on individual event magnitudes, resulting in
a set of clusters C with c = { f1, f2, ..., f|c|} for all clusters

1[a;b] represents the concatenation of the vectors a and b.
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c 2 C . The average silhouette measure is used to over an
entire clustering to determine the optimal number of clusters
as follows.

s =
1

|C | Â
c2C

1
|c| Â

f 2c

b( f )�a( f )
max{b( f ),a( f )} (6)

Where b( f ) is the dissimilarity between the event f and all
other events in other clusters, and a( f ) is the dissimilarity
between f and all other events in its own cluster. A silhouette
closer to 1 indicates a better clustering. Given an optimal
clustering of the unlabelled training data, the upper and lower
bounds on each cluster are found and used to bucket sample
data. Bayesian classification is then done over the distribution
of bucketed data against the clustering of the training data.

An example clustering of three datasets is shown in Fig-
ure 1. The solid line represents the pdf of events per day in
each of four clusters from training data. The dashed line is
the pdf of events in a clustering of the same scenario with
an HVAC system that is 30% more efficient than the baseline.
Finally, the line with ⇥ marks is the same scenario with the HVAC
bypassing the meter. As can be seen, the clustering of the malicious
test case differs significantly from the baseline and legitimate test
cases.

III. MULTI-SOURCE INFORMATION FUSIONS

We present an attack graph-based information fusion algorithm to
combine evidences about on-going attacks from multiple sources, i.e.,
detection algorithms. Figure 2 shows a simplified attack graph for an
AMI smart meter with the end malicious goal being a successful
energy theft. The attack graph is a state-based directed graph which
models various attack paths starting from the initial state s0 and
continues until the malicious end goal is achieved (represented by the
goal state sg) that is energy theft in this case. At each time instant,
the security state of the smart meter device (except the goal state) is
identified by the following two binary subvectors: 1) the attacker’s
current privilege over the meter that captures what the attacker can
do in the future and is either none ? or the administrative access
M according to configuration of the existing commercial meters;
and 2) the security consequences that captures the set of malicious
actions the attacker has already accomplished such as a modified
meter firmware or exhausted CPU on the meter.

Fig. 4. Unsupervised Learning of Basline (solid), Legitimate (dashed), and
Malicious ⇥ Profiles.

marks has the HVAC bypassing the meter. As can be seen, the
clustering of the malicious test case differs significantly from
the baseline and legitimate test cases.

In summary, the power-measurement monitoring system
provides the following observation capabilities to cover attacks
from our threat models described in Table I:

• Observation O12: supervised and unsupervised anomaly systems
to detect Ap6

• Observation O13: utility-side report freq. checkers to detect Ad1
• Observation O14: supervised anomaly system to detect Ad2
• Observation O15: aggregated monthly changes to detect Ad3
• Observation O16: supervised anomaly system to detect Ad4
• Observation O17: unsupervised anomaly system to detect Ad5
• Observation O18: utility-side negative consumption alert to

detect Ad6

V. MULTI-SOURCE INFORMATION FUSION

Alerts from each of the security sensors discussed in Section
IV indicate individual attack steps against AMI. However, as
proved in practice, these sensors report fairly large numbers
of false positives and sometimes miss intrusions; therefore,
reporting energy theft solely based on individual alerts will
result in many costly physical inspections. To improve the
overall accuracy, AMIDS makes use of a novel model-based
solution to correlate alerts and provides operators with con-
textual information. In particular, AMIDS leverages a set of
common energy theft attack paths, i.e., the different ways that
an energy theft attack could occur, to reduce false positives
due to individual false alarms.

AMIDS uses an attack graph-based information fusion algo-
rithm to combine evidence of on-going attacks from multiple
sources. Figure 5 shows a simplified energy theft attack graph
for a smart meter. The attack graph is a state-based directed
graph which models various attack paths starting from the
initial state s0 and continues until the goal of theft (state sg) is
reached. At each node, the security state of the smart meter is
identified by the following two binary values. 1) The attacker’s
current privilege in the meter: this captures what the attacker
can do in the future, and is either none ? or the administrator
privilege M. 2) The security consequences of attacker actions:
this captures the set of actions the attacker has accomplished
such as a modified meter firmware or exhausted CPU on the
meter.

As shown in the figure, there are specific alerts and intrusion
detection methods to identify each malicious action needed
to proceed through the graph. Because these individual alerts
are subject to false positives, AMIDS makes use of the
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Fig. 5. A Simplified Cyber-Physical Attack Graph for AMI

attack graph to detect energy theft efforts by correlating alert
sequences denoting a complete energy theft attack, i.e., a path
from s0 to sg.

To perform information fusion online, AMIDS considers the
attack graph as a hidden Markov model (HMM) [22] and the
alerts triggered by different detection techniques as observ-
ables oi 2 O. Formally, AMIDS considers each attack path
as a discrete-time hidden Markov process, i.e., event sequence
Y = (y0,y1, · · · ,yn�1) of arbitrary lengths. yi = (si,oi), where si
is an HMM state at the ith step of the attack and is unobserved,
and the observation oi is the set of triggered intrusion detection
alerts at that step. AMIDS’s main responsibility is to compute
Pr(st | o0:t), that is, the probability distribution over hidden
states at each time instant, given the HMM model and the past
IDS alerts o0:t = (o0, · · · ,ot). In particular, AMIDS makes use
of the forward-backward smoothing algorithm [22], which, in
the first pass, calculates the probability of ending up in any
particular HMM state given the first k alerts in the sequence
Pr(sk | o0:k). In the second pass, the algorithm computes a
set of backward probabilities that provide the probability of
receiving the remaining observations given any starting point
k, i.e., Pr(ok+1:t | sk). The two probability distributions can
then be combined to obtain the distribution over states at any
specific point in time given the entire observation sequence:

Pr(st | o0:t) = Pr(sk | o1:k,ok+1:t) µ Pr(ok+1:t | sk) ·Pr(sk | o1:k),
(7)

where the last step follows from an application of Bayes’s
rule and the conditional independence of ok+1:t and o1:k
given sk. Having solved the HMM’s smoothing problem for
Pr(st | o0:t), AMIDS probabilistically knows about the current
state. Consequently, AMIDS picks the state with highest
probability using the Most Likely State (MLS) technique [6]
s⇤ = argmaxs Pr(st | o0:t) and triggers the energy theft alert if
s⇤ = sg.

VI. EXPERIMENTAL EVALUATIONS

A. Load Profile Datasets
1) Baseline: We generate realistic load profiles based on

simulated residents and their electric device usage. Each
scenario is assigned a device profile consisting of a set of
appliances, electronic devices, lighting, and other household
items drawing power. Profiles are then created for individual
occupant types, e.g., that cook, do other chores or are noc-
turnal. These occupant types can be combined to simulate the
usage patterns of common household arrangements.

Each device consists of a usage profile with the device’s
power consumption as obtained from common device vendor
websites. Each user profile then contains the times of day,

number of uses, and durations of uses of each device. The
time of day and duration fields each have a time granularity
of one minute, giving us minute level load profiles. Previous
work has shown that refrigerators loads follow roughly a 70
minute cycle and power is only drawn for half of that duration
[3]. The simulated refrigerators are assigned a cycle between
60 and 70 minutes to introduce some variation into the model.

Power usage for the water heater is generated as a simplified
version of the model used in [11]. Heat loss due to hot water
use for showering, miscellaneous hot water usage, and ambient
temperature difference is considered to decrease the water
temperature at a constant rate. This results in only negligible
variations in the power usage compared to the previous model.
The HVAC system is simulated using a pre-calculated load
curve for a given temperate pattern. The compressor is then
simulated to approximately meet the load curve.

2) Legitimate Changes: Two modifications are made to
the baseline load profiles: legitimate, and malicious. In the
legitimate load, the traces are perturbed to reflect legitimate
deviations from the baseline. Ideally, AMIDS will not raise any
alerts for legitimate traces. Those traces are: (Legit-Replace)
the replacement of a large appliance with a version 30% more
efficient, (Legit-Season) reduced usage of heating or cooling
appliances due to seasonal changes, and (Legit-Occupant)
modified use of all appliances due to occupancy change.

3) Malicious Changes: In the malicious scenarios, the
traces are perturbed to reflect load changes caused by common
energy theft scenarios. Ideally, AMIDS will raise an alert for
each malicious trace. The three malicious cases are: (Mal-
Bypass) the bypassing of a large appliance, e.g., HVAC, around
the meter, (Mal-Disconnect) periodic disconnection of the
meter resulting in zero usage, and (Mal-Reduction) a constant
reduction in measured power, e.g., due to magnets or meter
hacking.

We will evaluate accuracy of the individual proposed detec-
tion solutions and the integrated AMIDS approach on various
normal (baseline) and anomalous usage profiles.

B. Integrated Intrusion Detection
We implemented the proposed HMM-based solution for the

integrated energy theft detection, and evaluated its overall
detection capability in dealing with sensor inaccuracies. In
particular, AMIDS was tested against three complete and
incomplete energy theft attack attempts (see Table II). The
first attack was a 5-step energy theft attack which was reported
by the intrusion detection sensors accurately (each step was
reported by the corresponding sensor). Each row in Table II
shows the posterior distribution over the attack graph’s state
space. As expected, AMIDS can detect the energy theft attempt
accurately, i.e., P(sg|observations) = 1. During the second
attack scenario (identical steps), some alerts were not triggered
by the sensors, and hence AMIDS had to infer the steps based
on the attack graph structure. As shown in the table, after the
last step, AMIDS reports the energy theft attempt with 85%
confidence. The last incomplete attack scenario which actually
does not result in the goal state is not reported as a successful
energy theft attempt with 87% confidence.

C. Accuracy
We now evaluate the accuracy of AMIDS under a number

of attacks on a load profile for a single occupant apartment.
We are particularly interested in the accuracy gains that can be



TABLE II
MULTI-SENSOR ENERGY-THEFT DETECTION USING THE AMIDS FRAMEWORK
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Cyber IDSs X X X - - - - - - -
Physical IDSs - - - X X X - - - -

Supervised - - - - X ⇥ X X X X
Unsupervised - - - - X X X ⇥ ⇥ X

AMIDS (HMM) X X X X X X X X X X

made through information fusion of (i) cyber IDS alerts, (ii)
physical tampering alerts, and (iii) load-based IDS alerts, as
compared to the accuracy of the individual methods. Table III
shows the results of running the individual IDSs as well as
the combined HMM approach on a single-occupant dwelling.
A check mark means that the correct action was taken, and
an ⇥ indicates a false positive or false negative. A dash
indicates that the experiment did not apply. As can be seen,
the combined approach eliminates the false positives of the
individual approaches. Alerting capabilities for the cyber and
physical IDSes were validated experimentally on real meters
in the TCIPG testbed [24]. In particular, we disconnected and
reversed meters and checked that alerts were generated. We
also collected a week of meter traffic in a mesh network of nine
meters and made connection attempts towards meters using a
rogue software client in order to test our implementation of
the ANSI C12.22 specification-based IDS.

Of particular instances are the three Legit cases designed to
cause false positives in the load-based approaches. Indeed, the
unsupervised learning algorithm identified two as malicious
behavior. The lack of any cyber or physical IDS alerts in these
cases resolved these false positives in the combined approach.
An additional false negative by the supervised approach was
also resolved. While additional field testing is necessary, these
results show that the HMM approach used by AMIDS is an
effective solution for combining smart meter data sources to
identify energy theft behaviors.

VII. CONCLUSIONS
In this paper, we presented AMIDS, an integrated intrusion

detection solution to identify malicious energy theft attempts
in advanced metering infrastructures. AMIDS makes use of
different information sources to gather sufficient amount of
evidence about an on-going attack before marking an activity
as a malicious energy theft. Our experimental results show that
through an effective information fusion and using the corre-
lation among the triggered alerts, AMIDS can detect various

types of energy theft attempts accurately using individually
inaccurate sensors.
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