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Abstract

Smart meters are now being aggressively deployed world-
wide, with tens of millions of meters in use today and
hundreds of millions more to be deployed in the next few
years. These low-cost (� $50) embedded devices have not
fared well under security analysis: experience has shown
that the majority of current devices that have come un-
der scrutiny can be exploited by unsophisticated attack-
ers. The potential for large-scale attacks that target a sin-
gle or a few vulnerabilities is thus very real. In this pa-
per, we consider how diversity techniques can limit large-
scale attacks on smart meters. We show how current meter
designs do not possess the architectural features needed
to support existing diversity approaches such as address
space randomization. In response, we posit a new return
address encryption technique suited to the computation-
ally and resource limited smart meters. We conclude by
considering analytically the effect of diversity on an at-
tacker wishing to launch a large-scale attack, showing
how a lightweight diversity scheme can force the time
needed for a large compromise into the scale of years.

1 Introduction

The smart grid is now a reality. Millions of homes and
businesses have been connected to regional and national
networks that enable real time reporting and control of
electrical use. This digitization of grid control systems
offers substantial benefits for society; increased efficien-
cies and information availability can enable cheaper and
greener energy generation, less loss in energy storage and
transmission, better fault isolation and recovery, and sup-
port for widespread consumer use of alternative energy
sources, e.g., consumer-generated wind and solar energy.

Smart meters are the consumer conduit to the grid. Re-
placing the near century-old electromechanical meters at-
tached to the exteriors of many buildings, smart meters are
enhanced sensors that record power use and act upon con-
trol signals from the grid. Smart meters are being aggres-
sively deployed: in addition to substantial investments by
industry, over $4.3 billion was recently allocated to the
deployment of the smart grid [23].

The move to digital grid control systems introduces
concerns about their security [16, 20, 19]. The smart grid
is a complex system of sensors, networks, and computing
resources. Attacks against the smart grid networks and
computing elements can range from fraud, to denial of
service, to privacy loss [21].

Of particular concern are the smart meters themselves.
Our and others’ recent analyses have shown that current
meters have exploitable flaws [22, 28]. Underlying these
vulnerabilities is that fact that the security mechanisms
they employ are sometimes naive or incomplete. This
heightens fears of a “billion dollar bug” [21]. This hy-
pothetical bug would exploit a common security vulnera-
bility present in widely deployed meters in a large-scale
coordinated attack. Such an attack could have immedi-
ate and costly consequences. However, fixing such a bug
would also be enormously expensive: current systems re-
quire physical access to reliably update firmware and re-
pair or replace physical components. In the few systems
that do support over-the-wire firmware updates, compro-
mised systems can silently refuse the updates [16].

Many have sought to prevent common failure modes
present in monocultures by introducing artificial software
diversity [9, 13, 1, 18, 4]. Unlike “real” software diver-
sity that requires nodes to run independently developed
software, artificial diversity alters the system software im-
age such that the each instance or execution is unique.
Canonical diversity techniques randomize the in-memory
layout of code and data. Because addresses are unpre-
dictable, customized attacks have to be crafted for each
victim system–an effort intensive proposition.

Existing diversity techniques can not be directly ap-
plied to smart meters. This is because these techniques re-
quire advanced processor features such as advanced pro-
gramming environments, memory management and pro-
tection rings. For example, protections based on safe C
variants [9, 13] or the addition of hardware-based fault
isolation is not practical in commercial embedded devel-
opment environments. Moreover, instrumentation such as
control-flow integrity [1], data flow integrity [4], and sys-
tem callsite verification [18] require a tamperproof moni-
tor to enforce the intended code and data paths. Firmware-
diversity on the other hand, is minimally invasive and can
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Figure 1: Smart meter operation. Figure (a) shows the two-tiered structure of meter-utility communications. Figure
(b) shows a typical smart meter architecture.

be implemented through static binary rewriting.
In this paper, we consider how diversity techniques can

limit large-scale attacks on the smart grid. We explore the
capabilities of an adversary attempting to mount a large-
scale attack. A novel redundant address encryption diver-
sity technique suited to the computationally and resource
limited smart meters is discussed, and its effectiveness
is analytically evaluated. Preliminary results show that
even when assuming a resource-rich attacker with knowl-
edge of meter vulnerabilities and unfettered access to me-
ter networks, large-scale compromises can be hampered
significantly. We begin in the next section with a brief
overview of the smart grid and meter architectures.

2 Smart Grids

This section details the features of commercial meters. It
then reviews the impact of the smart meters underlying
hardware on firmware diversity techniques.

2.1 Grid Architectures

Smart meters reduce operating costs for utilities. Pri-
marily, they provide automated meter reading (AMR),
in which network-connected meters report power usage
remotely. Along with usage information, smart meters
can also notify utilities of events such as power outages,
power quality problems, and potential meter tampering.
Smart meters can record time of day information along
side usage to allow for time-sensitive pricing [15]. Be-
sides timekeeping capabilities, this also requires onboard
storage to record net and peak usage at intervals nor-
mally ranging from one to fifteen minutes. Finally, me-
ters can perform a number of unscheduled actions such as
firmware and configuration upgrades from the utility and
disconnection of electrical service due to delinquency.

Smart meters communicate with utilities over a two-
tier network shown in Figure 1.a. Most meters reside in
the edge tier interconnected via a wireless mesh network.

Less common deployments use power line communica-
tion to form a local area network of repeater meters. The
purpose of the edge tier is to propagate information to
the gateway meter. The gateway forwards data and sig-
naling to and from the utility over a public network such
as the Internet or cellular network. Gateways–also called
collectors–may or may not function as meters and may
proxy data for a few to over a thousand meters (depend-
ing on the vendor design and provider needs). Gateways
are in almost all cases physically insecure. Both gateways
and repeaters have infrared (optical) ports that are used
for provisioning and maintenance by an onsite technician.
Note that optical ports may be probed for exploits in the
same manner as the wireless and WAN links.

2.2 Meter Design

A conceptual block diagram for a typical smart meter is
shown in Figure 1.b. The meter’s main control firmware
runs on a (Microcontroller Unit) MCU that coordinates
collection of usage data from the meter engine, storage of
usage data and I/O. The controller communicates with the
LAN and WAN cards via a modem-like serial AT com-
mand interface. Each of these runs an embedded network
stack for the appropriate medium (Ethernet, IR, cellular,
modem). The meter engine receives analog measurements
from a pair of Current Transformer (CT) coils, and com-
putes digital pulse data that is delivered to the meter’s
MCU at one second intervals. Energy samples are stored
in flash memory and forwarded to the provider based on a
configured schedule.

The main processor and communication cards ex-
change data over exposed buses contained within the me-
ter enclosure. Each component’s firmware is almost ex-
clusively built upon commodity embedded operating sys-
tems and low cost processors similar to ARM processors
but more minimal in features.

Demonstrative meters are shown in Table 1. The only
feature-rich architecture found is in the gateway node.
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Table 1: The operating environments for the different types of firmware in two commercial smart metering systems.
Firmware Type /

Meter Vendor

Processor Type MMU Privileged Mode NX Bit RAM

Repeater Controller Renesas M16C [7] No No No 20KB
Wireless Mesh Renesas H8S [6] No No No N/A
Embedded TCP/IP Lantronix DSTni-EX 186 [11] No No No 256KB
Gateway Controller Intel i386EX [12] Yes Yes No 8MB

The majority of meters rely on more cost-effective com-
ponents that lack support of advanced processor features.
For example, the lack of virtual memory combined with
the small physical address space immediately rules out
diversity techniques based on address space randomiza-
tion [27, 14]. Similarly, the lack of a non-executable bit
or W⊕X bit allows code to be injected on the stack.

3 Software Diversity

The most common exploit used against commodity sys-
tem is a buffer overflow. These attacks manipulate re-
turn addresses on the stack [2] to execute (often injected)
code. Canaries, or “stack cookies” are random values
placed between a function’s local variables and the return
address [25]. The value is checked for modification be-
fore the return address is followed to determine if a buffer
overflow clobbered the return address. The assumption is
that if the return address is modified, then the canary must
have been modified. In an embedded architecture where
the heap is not separated from the stack via segmentation,
this is not necessarily the case. Canaries are particularly
weak in the 8- and 16-bit architectures common in smart
meters because they are practically guessable.

A similar attack, heap overflows, exploit function
pointers on the heap to achieve the same ends. While it
has been suggested that the fields of data structures on
the heap be randomized [17], the small number of pos-
sible permutations does not stand up against continued
probing. A more general solution, address space layout
randomization (ASLR) [24], randomizes the locations of
code in memory to make it difficult to predict the proper
address to craft in the heap [10]. ASLR benefits from ar-
chitectural support for large virtual memory spaces which
create a large space in which to place code. ASLR can
be circumvented either through brute force [27] or in a
single attempt given memory disclosure of the global off-
set table used for dynamic linking [26]. While statically
linked embedded firmware does not suffer from the latter
problem, their limited physical address spaces, which are
typically between 10 and 50KB in size, render them vul-
nerable to parallel brute force probing. Smart meters are
equally poorly suited to support other layout obfuscation
techniques such as stack frame padding [3].

A common defense against code injection is the non-
exectable (NX) bit, which can be set on a program seg-
ment to prevent it from being executed as code. This ren-
ders injected code useless. NX bits require hardware level
support from a memory management unit (MMU), which
is not present in most MCUs used by smart meters.

4 Threat Model

We now describe the capabilities of an adversary attempt-
ing a large scale compromise of smart meters in order to
derive a set of requirements for firmware diversity. The
goal of the adversary is to compromise a large number n
of remote meters. The adversary knows a vulnerability
present in the meter firmware, but not the random secret
used to diversify each meter. Let p denote the expected
number of attempted exploits (probes) needed to compro-
mise a single meter. We assume that the adversary can
probe all n meters in parallel, be it through the WAN, me-
ter mesh networks, or both, receiving notification if an
exploit succeeds. Before we can model the time cost to
full compromise, we must establish a rate of probing.

From our experience, we find that communication be-
tween utilities and meters is very infrequent, usually on
the order of days. Similarly, communication with gate-
way meters occurs at most every fifteen minutes. Given
these lax throughput requirements, we make the conser-
vative assumption that meters can rate limit requests to r
requests per second, per unique source address. Rate lim-
iting must be done per source address to prevent a DoS
attack in which a high volume of probes cuts off util-
ity communication with the meter. While firewalls rep-
resent another defense against such attacks, we do not be-
lieve utilities can be expected to properly configure them
in even small deployments (on the order of 1,000 collec-
tors). Powerful adversaries, those with large numbers of
machines with which to perform probing, may lessen the
effect of per-connection rate limiting. Given these defi-
nitions, we can model the time cost T to compromise n
remote meters as T = pr

n . In the following sections, we
describe a method to obtain a satisfactory value for p, and
evaluate it in light of a powerful attacker.

Regarding the power of each exploit attempt, we as-
sume the attacker can arbitrarily overwrite control flow
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information on the stack without being detected by stack
protection mechanisms. Furthermore, we assume that
memory disclosure may be used to obtain arbitrary mem-
ory contents, with the exception of the diversity secret.
This is reasonable as unsafe printf usage can be curbed
by padding the secret with NULL bytes, which cause
printf to stop reading a string. We note that some me-
ters do limit their attack surface by dropping unauthen-
ticated requests without further processing. In practice
however, we have found that some meters run multiple
third party networking stacks, and support undocumented
features such as an FTP server which caused frequent re-
boots in a collector unit that we subjected to fuzz testing.

5 Firmware Diversity

This section presents a method for firmware diversity ca-
pable of significantly slowing a large-scale compromise
of smart meters. We propose a form of return address
encryption to protect addresses on the stack that can be
implemented via binary rewriting.

5.1 Address Encryption

Strong threat models, such as the one presented in this pa-
per, assume an adversary can overwrite any data on the
stack or heap without detection by any canary-like mech-
anism. A stronger protection method, as proposed by
PointGuard TM [5], is to encrypt these addresses before
they are stored in the stack or heap, and decrypt them im-
mediately before they are used by a branch instruction. If
an exploit overwrites an address without knowing the de-
cryption key, the decryption process will mangle the ex-
ploit address into a random value. The scheme works as
follows. When a function is called, the return address A
is not immediately written to the stack. Instead it is com-
bined with a secret key K using exclusive or, and the re-
sulting A⊕K is pushed to the stack. K is the only secret
in memory that must be protected from memory disclo-
sure attacks. Before the function returns, A ⊕ K is read
into a register and recombined with K to recover the orig-
inal address, which is then used for the branch back to the
calling function. While exclusive or may not seem like an
adequate encryption method, the adversary only receives
notification if the attack was a success or failure, forcing
a brute-force exploration of the entire key space.

There is one major shortcoming of using this method in
isolation. If an adversary uses a vulnerability to overwrite
A ⊕ K with some value A�, the decryption process will
yield A� ⊕K, a random address. In the original work on
PointGuard, it is assumed that in a sparse virtual address
space, jumping to such a random address will result in a
segmentation fault or other type of program crash. This is

considered a preferable fail-stop compared with a success-
ful compromise. However, because smart meter down-
time equates to lost revenue for utilities, such crashes or
other unpredictable behaviors are unacceptable beyond a
few meters. If a random guess at an address could be used
to crash a meter, then an adversary could launch a large-
scale “ping of death” attack against an entire smart meter
installation with high efficiency. A method to validate a
recovered address is needed.

5.2 Redundant Address Encryption

One way of validating decrypted addresses would be to
keep a hash of the valid address along with the encrypted
copy. Hashing however, is too heavyweight to execute
at every function invocation. A more lightweight mech-
anism such as a checksum will be modifiable by an ex-
ploit, and thus will not detect tampering. Instead, we
design a scheme that uses redundant encryptions of the
same address with different keys. As a compromise be-
tween attack slowdown and meter performance, we use
three encryptions total with keys K1, K2, and K3. More
or less redundancy may be used depending on the threat
model and performance requirements. The resulting ad-
dress kept on the stack is A ⊕ K1||A ⊕ K2||A ⊕ K3.
Two additional machine words are allocated for the ex-
tra addresses. When an adversary overwrites this ad-
dress using A�

1||A�
2||A�

3, the resulting decryption will be
A�

1⊕K1||A�
2⊕K2||A�

3⊕K3. Before the branch is taken,
a check is performed that A�

1⊕K1 = A�
2⊕K2 = A�

3⊕K3.
If any one of the three decrypted address does not match
another, then an attempted exploit has occurred, and the
branch is not followed. Note that the adversary is forced to
overwrite all three encrypted addresses because all three
result in the same valid control flow. The probability of
a false negative, three matching addresses that are not a
valid control flow, is 1/232 on a 16-bit architecture. The
probability that a meter is successfully compromised is
1/248, sufficient to severely limit the rate of an attempted
large-scale compromise.

What is left is the question of how to react to an invalid
decryption. Most commercial smart meters already sup-
port logging and some form of alarm condition reporting,
but do not have a means of responding to detected intru-
sions without a human in the loop. We believe that the
most reasonable defense is to immediately stop process-
ing the request, which is at this point unauthenticated, and
generate a new K1, K2 and K3.

5.3 Binary Instrumentation

Due to the use of firmware from different third party ven-
dors, it is impractical to implement redundant address en-
cryption in each compiler. Instead, we aim to achieve
it using binary instrumentation. We provide an example
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Original function call:

push A ; Save address

jmp B ; Perform branch

Instrumented function call:

mov D [key1_addr] ; D = K_1

mov C A ; C = A

xor C D ; C = C XOR D

push C ; Save encrypted address

mov D [key2_addr] ; D = K_2

mov C A ;

xor C D ; Second redundant encryption

push C ;

mov D [key3_addr] ; D = K_3

mov C A ;

xor C D ; Third redundant encryption

push C ;

jmp B ; Perform branch

Figure 2: Function Call Instrumentation

Original return:

pop A ; Load return address

jmp A ; Perform branch

Instrumented return:

mov D [key3_addr] ; D = K_3

pop A ; Load third encrypted address

xor A D ; A = A XOR D

mov D [key2_addr] ; D = K_2

pop B ; Load second encrypted address

xor B D ; B = B XOR D

mov D [key1_addr] ; D = K_1

pop C ; Load first encrypted address

xor C D ; C = C XOR D

cmp A B ; Check A - B

jnz fail_stop ; Fail if A - B != 0

cmp B C ; Check B - C

jnz fail_stop ; Fail if B - C != 0

jmp A ; Return to calling function

Figure 3: Function return instrumentation

here of the instructions that must be matched and mod-
ified at each function call and return. For this example,
let register A contain the instruction pointer and register
B contain the address of the target function. The ith se-
cret key is located at keyi addr. While the prototypi-
cal instructions most resemble the familiar x86 assembly
language, equivalents exist for each architecture found in
Table 1. In reality, the task is slightly easier on most archi-
tectures that support explicit call and ret instructions.

Figure 2 shows the instrumentation for a function call.
In order to instrument calls, the actions taken to save the
return address before the branch must first be identified.
Some architectures support a single call instruction to
perform both the save and the branch. In this case, it suf-
fices to match against the explicit call. The placement
of three return addresses does not affect instructions work-
ing with function local variables, because the stack base
pointer is normally placed above the return address. The
instrumentation for safe function returns is shown in Fig-
ure 3. Matching returns requires finding an explicit ret
instruction where supported, or finding jmp that uses a
register who’s last value was popped from the stack.

While we acknowledge that code bloat is a real problem
in embedded environments, we believe that binary instru-
mentation is still practical. There are several obvious im-
provements including rolling the encryptions into loops,
and implementing the address encryption at the beginning
of each function, as opposed to each of the far more nu-
merous call sites. We defer any further improvements to
future work.

6 Evaluation

Using firmware diversity, a global slowdown in a large
scale compromise means a local performance impact for
each meter. We now evaluate this trade off for a triple

redundant address encryption scheme.

6.1 Attack Slowdown

In a simulation of a zero-day smart meter attack leverag-
ing a real exploit, it was shown that a smart meter worm
could propagate via the meter WLAN to 15,000 homo-
geneous nodes in approximately 24 hours [8]. Using the
threat model described in Section 4, we observe a substan-
tial increase in the time for a large compromise given di-
versified meters, even when assuming a much stronger at-
tacker. Triple redundant address encryption affords an ex-
pected number of probes to compromise of p = 248. As-
suming an attacker that controls one thousand machines,
each of which can execute one parallel probe per minute,
this would require approximately ten years to compromise
an n = 15,000 node deployment in which per-source re-
quests are limited to r = 3 per minute. This is highly
conservative in light of the far less stringent throughput
requirements for current smart meters. This leads us to
believe that triple redundant address encryption with rate
limiting is a sufficient diversity technique to be deployed
in current meters, which are expected to work without
field maintenance for decades.

6.2 Performance Considerations

The overhead created by redundant encryption can be in-
ferred largely from examining the assembly code in sec-
tion 5.3. In each case, the overhead is less than 15 cycles
for the individual instructions plus the cost of the mem-
ory accesses to the three keys. Assuming that these values
are frequently in the MCU cache, they should cost only
one or two additional cycles. While this number of total
cycles may be unacceptable on general purpose systems
which have CPU-bound workloads, smart meter firmware
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is mainly I/O-bound. The limited throughput of the net-
work related firmware has already been discussed, and
data is received from the meter engine at a rate of once per
second to be stored in low-cost flash memory. The twenty
cycles consumed by address encryption and decryption is
negligible by comparison.

7 Summary and Future Work

This preliminary work has begun to consider diversity as a
means of stemming the inevitable attacks against low cost
smart meters. Future efforts will apply this and identify
new techniques for diversity in embedded devices with
feature-poor processors. Such efforts will be informed by
the new attacks discovered in the field and within pen-
etration testing. In preventing adversaries from leverag-
ing vulnerabilities found in one system against others,
we hope to mitigate large-scale infrastructure attacks that
could damage communities, regions and nations.
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