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ABSTRACT

Data provenance—a record of the origin and evolution of data in
a system—is a useful tool for forensic analysis. However, existing
provenance collection mechanisms fail to achieve sufficient breadth
or fidelity to provide a holistic view of a system’s operation over
time. We present Hi-Fi, a kernel-level provenance system which
leverages the Linux Security Modules framework to collect high-
fidelity whole-system provenance. We demonstrate that Hi-Fi is
able to record a variety of malicious behavior within a compro-
mised system. In addition, our benchmarks show the collection
overhead from Hi-Fi to be less than 1% for most system calls and
3% in a representative workload, while simultaneously generating
a system measurement that fully reflects system evolution. In this
way, we show that we can collect broad, high-fidelity provenance
data which is capable of supporting detailed forensic analysis.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; D.4.6 [Operating Systems]: Security and Pro-
tection—Invasive software

General Terms

Security, Design

Keywords

data provenance, forensics, malware, reference monitor

1. INTRODUCTION
Data provenance, which is a detailed record of the origin and

evolution of data in a system, is a useful tool in systems secu-
rity. In its raw form, provenance data is simply a series of sys-
tem events, such as a file being written or a process being created.
Taken together, these events form the provenance record for that
system, and examining this record can reveal detailed information
about the system’s secure or insecure operation. Previous works on
data provenance have pointed out many such possibilities, such as
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performing intrusion detection [19] or identifying data which may
have been exfiltrated from the system [10].

Provenance records are well suited to system forensics. Current
forensic analysis techniques exploit the flexibility of event-based
logs for a number of purposes. For example, audit logs can be
used to evaluate ongoing compliance with real-world policies [6]
or to create detailed reconstructions of several aspects of system
state [7]. A complete provenance record provides an even richer
set of information for this purpose (see Section 3.2).

However, for a data provenance system to provide the holistic
view of system operation required for such forensic applications,
it must be complete and faithful to actual events. This property,
which we call “fidelity,” is necessary for drawing valid conclusions
about system security. A missing entry in the provenance record
could sever an important information flow, while a spurious en-
try could falsely implicate an innocuous process. As we discuss
in Section 2.1, these requirements can be achieved by designing
the provenance collection mechanism around the reference monitor
concept [1]. In particular, this mechanism must provide complete
mediation for events which should appear in the record.

The following scenario illustrates this need: Alice runs a high-
profile website. One day, her web server is infected by the (hypo-
thetical) PwnHP worm. PwnHP takes control of a website’s be-
havior by infecting the system’s PHP binary. It also starts a dae-
monized process which periodically connects to a command and
control server for instructions. These connections alert Alice to the
fact that something is amiss.

Fortunately, Alice is collecting provenance data for this system.
She retrieves the logs from her append-only storage server and be-
gins to investigate. First, she locates one of the outgoing connec-
tions in the provenance record and traces the process provenance
back to the original compromised thread in her web server. She
can then follow the provenance trail forward to see the modified
PHP binary, as well as all of the malicious behavior that it per-
forms when executed. Alice can then proceed with confidence in
restoring her system to a good state.

One lesson we can learn from this story is that forensic investiga-
tion requires a definition of provenance which is broader than just
file metadata. What is needed is a record of whole-system prove-

nance which retains actions of processes, IPC mechanisms, and
even the kernel. These “transient” system objects can be meaning-
ful even without being an ancestor of any “persistent” object. The
command-and-control daemon on Alice’s server, for example, was
significant because it was a descendant of the compromised pro-
cess. If the provenance system had deemed it unworthy of inclusion
in the record, she could not have traced the outgoing connections
to the compromise.



In this paper, we present Hi-Fi, a provenance system designed
to collect high-fidelity whole-system provenance. Hi-Fi is the first
provenance system which can collect a complete provenance record
from early kernel initialization through system shutdown. Unlike
existing provenance systems, it accounts for all kernel actions as
well as application actions. Hi-Fi can also collect socket prove-

nance, creating a system-level provenance record that spans mul-
tiple hosts. Furthermore, it solves a number of design and imple-
mentation problems unique to this work.

We evaluate Hi-Fi in two ways. First, we demonstrate its ability
to capture behavior on a system running malicious software. We
create a tool which performs common malicious actions such as
creating a backdoor account, establishing persistence in the sys-
tem, and exfiltrating sensitive data. In each case, inspection of the
system provenance record revealed the malicious actions. Second,
we evaluate Hi-Fi’s performance for individual system calls and for
a system-call heavy workload. We observe an overhead of less than
1% for most system calls, and a maximum of 6% for the read sys-
tem call. For an I/O-bound workload, the average overhead is less
than 3%.

2. BACKGROUND
Maintaining provenance records is a well-established practice in

fields which deal with physical artifacts, but provenance for dig-
ital artifacts is a comparatively new application. The earliest im-
plementations of digital provenance focused on highly structured,
special-purpose data. One such system is Trio [25], a database
management system that stores the provenance of its records. Many
other special-purpose systems exist, such as Panda [9], which fo-
cuses on specific workflows, and provenance aware Condor [18],
which collects provenance for jobs on a specific batch system.

To support forensic analysis, however, we need the ability to
trace arbitrary, unstructured data. This requires general-purpose,
system-level provenance collection. The first such provenance sys-
tem, Lineage File System [19], accomplished this by intercepting
system calls in a modified Linux kernel. When an application ex-
ecuted one of these calls, a record describing the action would be
written to the printk buffer and stored in a MySQL database. The
same system-call approach is used by more recent systems, such as
PASSv2 [15], which handles ten different system calls, and Foren-
six [8], which intercepts around seventy-five. These systems an-
alyze the arguments to system calls and write provenance data to
log files on the disk. Unfortunately, system-call interception can-
not produce a complete provenance record, because the kernel it-
self does not use system calls. Kernel-initiated actions, such as
executing the interpreter for Alice’s PHP scripts, are therefore not
captured at the system-call layer.

Another option for collecting system-level provenance is to in-
strument the filesystem layer (e.g., the Linux VFS). This is the ap-
proach taken by the Story Book provenance system [21]. Story
Book is designed as a framework which allows multiple “prove-
nance sources” to collect data. One of the provided sources is a
filesystem implemented using the FUSE API [4]. This filesystem
acts as a layer between the kernel and an existing filesystem, cap-
turing file activity and writing the resultant provenance data to a
custom transactional storage system. Both the kernel and applica-
tions access files through the VFS, so this approach can generate a
complete record of file activity. However, this does not provide the
whole-system view of provenance needed for forensics.

2.1 Linux Security Modules
In order to create a system which does provide the needed prop-

erties, we draw on the three design goals of the reference monitor
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Figure 1: Complete mediation with LSM

concept [1]. Tamperproofness, which states that a system cannot
be made to behave incorrectly, will ensure that our provenance col-
lector does not generate spurious or inaccurate records. Complete
mediation guarantees that every access is handled, whether initi-
ated by an application or by the kernel. For a provenance collector,
this ensures that every legitimate event will appear in the record.
Finally, if the collector is simple enough to be verified, then we can
be certain that the first two properties hold. Taken together, these
three conditions guarantee fidelity of the provenance record.

Current approaches to provenance systems do not provide suffi-
cient fidelity. Our system overcomes this by building on a frame-
work intended for complete mediation. Linux Security Modules, or
LSM, is a framework which was originally designed for integrat-
ing custom access control mechanisms into the Linux kernel [26].
It does this by mediating access, not to system calls, but to kernel
objects themselves, as Figure 1 illustrates. The LSM framework
comprises a set of hooks which are carefully placed throughout the
kernel. Security modules can provide an implementation for any
of these hooks, which are executed just before the corresponding
access takes place. The placement of these hooks has been repeat-
edly analyzed and refined [3, 5, 28, 24] to ensure that every access
is mediated.

The designers of the LSM framework are deliberate in establish-
ing where this mediation takes place. In particular, they identify
several issues with system-call interception: that it “is not race-free,
may require code duplication, and may not adequately express the
full context needed to make security policy decisions” [26]. LSM
was created to avoid these problems and provide complete media-
tion, which is required for high-fidelity provenance collection.

3. DESIGN
Hi-Fi consists of three components: the provenance collector, the

provenance log, and the provenance handler. Figure 2 depicts the
interaction between these components. The collector is an LSM; as
such, it resides in kernelspace and is notified whenever a kernel ob-
ject access is about to take place. When invoked, the collector con-
structs an entry describing the action and writes it to the provenance
log. The log is a buffer which presents these entries to userspace
as a file. The provenance handler can then access this file using the
standard file API, process it, and store the provenance record. The
handler used in our experiments simply copies the log data to a file
on disk, but it is possible to implement a custom handler for any
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Figure 2: Architecture of Hi-Fi

purpose, such as post-processing, graphical analysis, or storage on
a remote host.

3.1 Threat Model
We define a threat against our system as any way of compromis-

ing the fidelity of the provenance record during collection. Hi-Fi
maintains the fidelity of provenance collection under any userspace
compromise. This is a strictly stronger guarantee than those pro-
vided by current system-level provenance collection systems. In
the event of a kernel-level compromise, the adversary will be able
to tamper with the compenents of the provenance collector. How-
ever, the integrity of data up to and including the kernel com-
promise can be protected by an isolated disk-level versioning sys-
tem [22] or a strong write-once read-many storage system [20]. In
fact, since provenance data never changes after being written, a
storage system with strong WORM guarantees is particularly well-
suited to this task. For socket provenance, Hi-Fi guarantees that
incoming data will be recorded accurately; to prevent on-the-wire
tampering by an adversary, standard end-to-end protection such as
IPsec should be used.

3.2 Provenance Collector
The main component of Hi-Fi is the in-kernel provenance col-

lector, which is responsible for observing provenance-generating
events. The collector consists of a number of LSM hooks which
mediate operations on kernel objects. Table 1 lists all of the hooks
which generate provenance data; several other hooks are used for
internal memory management. For each hook, the collector gathers
the relevant context from the kernel and writes one or more entries
to the provenance log. By mediating the appropriate kernel objects,
we are able to capture a wide variety of events:

� Reads and writes to file descriptors, including regular files,
device files, and pipes.

� File operations: renaming, changing permissions, etc.

� Inter-process communication, such as shared memory, mes-
sage queues, and UNIX domain sockets.

� Network communication between provenanced hosts.

� Program execution with full arguments and environment.

� Creation and deletion of credential objects (creds), which
represent both process and kernel actions.

� User transitions, e.g., login changing to the authenticated
user and group, passwd escalating to root by setuid execu-
tion, or sshd dropping privileges.

Kernel object LSM hook

Inode inode_init_se
urity

inode_free_se
urity

inode_link

inode_unlink

inode_rename

inode_setattr

inode_readlink

inode_permission

Open file file_mmap

file_permission

Program bprm_
he
k_se
urity

bprm_
ommitting_
reds

Credential 
red_prepare


red_free


red_transfer

task_fix_setuid

Socket so
ket_sendmsg

so
ket_post_re
vmsg

so
ket_so
k_r
v_skb

so
ket_dgram_append

so
ket_dgram_post_re
v

unix_may_send

Message queue msg_queue_msgsnd

msg_queue_msgr
v

Shared memory shm_shmat

Table 1: LSM hooks used to collect provenance

These events provide a comprehensive view of a system’s history,
including the entire process execution tree, the complete filesystem
structure, and explicit information flows that may include network
communication. These features can also be reconstructed for any
given point in the past.

3.3 Provenance Handler
The responsibility of the provenance handler is to interpret, pro-

cess, and store the provenance data after it is collected, and it should
be flexible enough to support different needs. Consider the follow-
ing examples. Alice, the website administrator we met earlier, has
a dedicated provenance storage server with a huge disk. She does
not want to do any extra processing or storage on her already over-
loaded web server; she just wants to move the provenance data over
the LAN to her storage server as quickly as possible. Bob, on the
other hand, is a provenance-curious researcher who would like to
gather data from a number of volunteers. He would like the data
formatted according to the Open Provenance Model [14] and up-
loaded to his web server in XML format. Alice and Bob have very
different processing and storage needs for their provenance data.
With an existing provenance system, their data would be stored in
a database on disk before they could choose how to handle it.

Hi-Fi does not impose such limitations. Instead, we decouple
the provenance handler from the collection process, allowing the
system administrator to implement the handler according to the
needs of the system. In our example, Alice can create a simple
Bash script which pipes provenance data through ssh directly to
her storage server. Bob is free to create a more complex handler
which reads the log, uses a Java library from the OPM website to
build the model and convert it to XML, and executes an HTTPS
request to submit the document to his online database. He can then
distribute this program to his volunteers.



An added benefit of this design is that it keeps complex algo-
rithms out of the collector. Existing systems have devoted consid-
erable effort to dealing with problems in provenance representation,
such as compact storage or graph cycles [16]. Our design simply
allows the handler to address these problems in whatever way is
most appropriate.

4. SYSTEM-LEVEL OBJECT MODEL
Collecting system-level provenance requires a clear model of

system-level objects. For each object, we must first describe how
data flows into, out of, and through it. Next, we identify the LSM
hooks (listed in Table 1) which mediate data-manipulating oper-
ations on that object, or we place new hooks if the existing ones
are insufficient. Finally, we decide how the relevant objects can be
uniquely identified in the provenance log.

Each entry in the provenance log describes a single action on
a kernel object. This includes the type of action, the subject, the
object, and any appropriate context. For example, starting a kernel
build could generate the following entry:

Type Execute
Subject Credential 508
Object Root filesystem, inode 982
Arguments “make”, “–j8”, “bzImage”
Environment “HOME=/home/alice”,

“PATH=/usr/bin:/bin”,
“SHELL=/bin/bash”, . . .

For the purposes of recording provenance, each object which can
appear in the log must be assigned an identifier which is unique for
the lifetime of that object. Some objects, such as inodes, are already
assigned a suitable identifier by the kernel. Others, such as sockets,
require special treatment. For the rest, we generate a “provid,” a
small integer which is reserved for the object until it is destroyed.
These provids are managed in the same way as process identifiers
to ensure that two objects cannot simultaneously have the same
provid. When an object which needs an identifier is created, we
allocate a provid and attach it using the opaque se
urity pointer
provided by LSM. When the object is freed, we release the provid
to be used again.

In later sections, we will show log entries in an abbreviated,
human-readable form, with inode numbers resolved to filenames,
and forks implied by a change in the bracketed provid:

[508℄ exe
 rootfs:/usr/bin/make -j8 bzImage

4.1 System, Processes, and Threads
Our model of data flow includes transferring data between mul-

tiple systems or multiple boots of a system. We therefore need to
identify each boot separately. To ensure that these identifiers do not
collide, we create a random UUID at boot time. We then write it
to the provenance log so that subsequent events can be associated
with the system on which they occur.

Within a Linux system, the only actors are processes1 and the
kernel. These actors store and manipulate data in their respective
address spaces, and we treat them as black boxes for the purpose of
provenance collection. Most data flows between processes use one
of the objects described in subsequent sections. However, several
actions are specific to processes: forking, program execution, and
changing subjective credentials.

1On Linux, threads are a special case of processes, so we will use
the term “process” to refer collectively to both.

Since LSM is designed to include kernel actions, it does not rep-
resent actors using a PID or task_stru
t structure. Instead, LSM
hooks receive a 
red structure, which holds the user and group
credentials associated with a process or kernel action. Whenever a
process is forked or new credentials are applied, a new credential
structure is created, allowing us to use these structures to represent
individual system actors. As there is no identifier associated with
these 
red structures, we generate a provid to identify them.

4.2 Files and Filesystems
Regular files are the simplest and most common means of storing

data and sharing it between processes. Data enters a file when a
process writes to it, and a copy of this data leaves the file when
a process reads from it. Both reads and writes are mediated by
a single LSM hook, which identifies the the actor, the open file
descriptor, and whether the action is a read or a write. Logging file
operations is then straightforward.

Choosing identifiers for files, on the other hand, requires some
thought. We must consider that files differ from other system ob-
jects in that they are persistent, not only across reboots of a single
system, but also across systems (like a file on a portable USB drive).
Because of this, it must be possible to uniquely identify a file in-
dependent of any running system. In this case, we can make use
of identifiers which already exist rather than generate new ones.
Each file has an inode number which is unique within its filesys-
tem. If we combine this with a UUID that identifies the filesystem
itself, we obtain a suitable identifier that will not change for the
lifetime of the file. UUIDs are generated for most filesystems at
creation, and we generate random UUIDs for the Linux kernel’s
internal pseudo-filesystems when they are initialized. We can then
use the combination of UUID and inode number to identify the file
in all filesystem operations, as well as to identify a program file
when it is being executed.

4.3 Memory Mapping
Files can also be mapped into one or more processes’ address

spaces, where they are used directly through memory accesses.
This differs significantly from normal reading and writing in that
the kernel does not mediate accesses once the mapping is estab-
lished. We can only record the mapping when it occurs, along with
the requested access mode (read, write, or both). Note that this does
not affect our notion of complete mediation if we conservatively
assume that flows via memory-mapped files take place whenever
possible.

Shared memory segments are managed and interpreted in the
same way. POSIX shared memory is implemented using mem-
ory mapping, so it behaves as described above. XSI shared mem-
ory, though managed using different system calls and mediated by
a different LSM hook, also behaves the same way, so our model
treats them identically. In fact, since shared memory segments are
implemented as files in a temporary filesystem, their identifiers can
be chosen in the same way as file identifiers.

4.4 Pipes and Message Queues
The remaining objects have stream or message semantics, and

they are accessed sequentially. In these objects, data is stored in
a queue by the writer and retrieved by the reader. The simplest
such object is the pipe, or FIFO. Pipes have stream semantics and,
like files, they are accessed using the read and write system calls.
This interaction is illustrated in Figure 3a. Since a pipe can have
multiple writers or readers, we cannot represent it as a flow di-
rectly from one process to another. Instead, we must split the flow
into two parts, modeling the data queue as an independent file-like
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Figure 3: Models of data flow

object. In this way, a pipe behaves like a sequentially-accessed reg-
ular file. In fact, since named pipes are inodes within a regular
filesystem, and unnamed pipes are inodes in the kernel’s “pipefs”
pseudo-filesystem, we can choose pipe identifiers exactly as we do
for files.

Message queues are similar to pipes, with two major semantic
differences: the data is organized into discrete messages instead of
a single stream, and these messages can be delivered in a different
order than that in which they are sent. Fortunately, LSM handles
messages individually, so we can create a unique identifier for each.
We can then reliably tell which process receives it, regardless of
the order in which the messages are dequeued. Since individual
messages have no natural identifier, we generate a provid for each.

4.5 Sockets
Sockets are the most complex form of inter-process communica-

tion handled by our system, but they can be modeled very simply.
As with pipes, we treat a socket’s receive queue as an intermediary
file between the sender and receiver, as shown in Figure 3. Send-
ing data, then, is just writing to this queue, and receiving data is
reading from it. The details of network transfer are hidden by the
socket abstraction, so we only need to consider the semantic differ-
ences between socket types.

Stream sockets provide the simplest semantics with respect to
data flow: they behave identically to pipes. Since stream sockets
are necessarily connection-mode, all of the data sent over a stream
socket will arrive in the same receive queue. If we assign one
identifier to each socket endpoint, we can use these identifiers for
the lifetime of the socket. Message-oriented sockets, on the other
hand, do not necessarily have the same guarantees. They may be
connection-mode or connectionless, reliable or unreliable, ordered
or unordered. We only know that any messages which are deliv-
ered are delivered intact. Each packet therefore needs a separate
identifier, since we cannot be sure at what endpoint it will arrive.

In determining how identifiers are chosen, we must reason care-
fully about socket behavior. We should never reuse an identifier,
since a datagram can have an arbitrarily long lifetime. We also

want the identifier to be associated with the originating host. The
per-boot UUID described in Section 4.1 addresses both of these re-
quirements. By combining this UUID with an atomic counter, we
can generate unique identifiers for socket provenance. As long as
this counter is large enough to avoid rolling over, we can be rea-
sonably certain that socket identifiers will remain unique.

In order to generate useful log entries, we must consider the se-
quence of events for sending and receiving data. Suppose process
A on host X sends data which arrives in queue Q on host Y. Pro-
cess B on host Y then receives this data. In this case, the following
events should occur:

1. Process A passes data to the send function. X writes “A
sends to Q” to the log.

2. The data is encapsulated in a packet as defined by the socket’s
protocol family.

3. The packet may be transmitted over a network.

4. The packet is either dropped, in which case no flow takes
place, or it is delivered and saved to queue Q.

5. Process B is given some data from this queue as the output
from the re
v function. Before returning control to B, Y
writes “B receives from Q” to the log.

Writing the “send” entry is the tricky step, because the sender needs
to know the identifier of the remote receive queue. However, the
sender and receiver may not have any shared information which
can be used to agree on an identifier, so the cleanest solution is
for the sender to choose an identifier for the remote receive queue
and transmit it along with the first data packet. (How this happens
depends on the socket’s protocol family.) In this way, both the
sender and receiver have the data needed to write their log entries.

5. IMPLEMENTATION DETAILS
In the course of creating Hi-Fi, we have overcome a variety of

implementation challenges. Several of our solutions, such as run-
ning a provenance-opaque process, are new to the literature. Oth-
ers, such as moving data efficiently from the kernel to userspace,
are new solutions to problems that existing provenance work has
solved in other ways.

5.1 Efficient Data Transfer
Provenance collection has been noted to generate a large vol-

ume of data [2]. Because of this, we need an efficient and reli-
able mechanism for making large quantities of kernel data avail-
able to userspace. Other systems have accomplished this by using
an expanded printk buffer [19], writing directly to on-disk log
files [15], or using FUSE [21]. However, none of these methods is
appropriate for our system design. Instead, we use a Linux kernel
object known as a “relay,” which is designed specifically to address
this problem [27].

A relay is a kernel ring buffer made up of a set of preallocated
sub-buffers. Once the relay has been initialized, the collector writes
provenance data to it using the relay_write function. This data
will appear in userspace as a regular file, which can be read by the
provenance handler. Since the relay is backed by a buffer, it retains
provenance data even when the handler is not running, as is the case
during boot, or if the handler crashes and must be restarted.

Since the number and size of the sub-buffers in the relay are
specified when it is created, the relay has a fixed size. Although
the collector can act accordingly if it is about to overwrite prove-
nance which has not yet been processed by the handler, it is better



to avoid this situation altogether. To this end, we allow the relay’s
size parameters to be specified at boot time.

5.2 Early Boot Provenance
The Linux kernel’s boot-time initialization process consists of

setting up a number of subsystems in sequence. One of these sub-
systems is the VFS subsystem, which is responsible for manag-
ing filesystem operations and the kernel’s in-memory filesystem
caches. These caches are allocated as a part of VFS initialization.
They are then used to cache filesystem information from disk, as
well as to implement memory-backed “pseudo-filesystems” such
as those used for pipes, anonymous memory mappings, temporary
files, and relays.

The security subsystem, which loads and registers an LSM, is
another part of this start-up sequence. This subsystem is initialized
as early as possible, so that boot events are also subject to LSM me-
diation. In fact, the LSM is initialized before the VFS, which has a
peculiar consequence for the relay we use to implement the prove-
nance log. Since filesystem caches have not yet been allocated, we
cannot create a relay when the LSM is initialized. Our design goal
of fidelity makes this a problem unique to our system: not only are
we forced to postpone relay setup, but we must also do so without
losing boot provenance data.

We therefore separate relay creation from the rest of the module’s
initialization and register it as a callback in the kernel’s generic
“initcall” system. This allows it to be delayed until after the core
subsystems such as VFS have been initialized. In the meantime,
provenance data is stored in a small temporary buffer. Inspection
of this early boot provenance reveals that a one-kilobyte buffer is
sufficiently large to hold the provenance generated by the kernel
during this period. Once the relay is created, we flush the contents
of the temporary boot-provenance buffer to it and free the buffer.
By doing this, we can collect and retain provenance data for a large
portion of the kernel’s initialization process.

5.3 Operating System Integration
One important aspect of Hi-Fi’s design is that the provenance

handler must be kept running to consume provenance data as it is
written to the log. Since the relay is backed by a buffer, it can
retain a certain amount of data if the handler is inactive or hap-
pens to crash. It is important, though, that the handler is restarted
in this case. Fortunately, this is a feature provided by the op-
erating system’s init process. By editing the configuration in
/et
/inittab, we can specify that the handler should be started
automatically at boot, as well as respawned if it should ever crash.

We also want to collect and retain provenance data for as much of
the operating system’s shutdown process as possible. At shutdown
time, the init process takes control of the system and executes a
series of actions from a shutdown script. This script asks processes
to terminate, forcefully terminates those which do not exit grace-
fully, unmounts filesystems, and eventually powers the system off.
Since the provenance handler is a regular userspace process, it is
subject to this shutdown procedure as well. However, there is no
particular order in which processes are terminated during the shut-
down sequence, so it is possible that another process may outlive
the handler and perform actions which generate provenance data.
Our goal of fidelity requires that we collect this provenance.

Our solution is to handle the shutdown process in the same way
we would handle a crash: restart the provenance handler. We mod-
ify the shutdown script to re-execute the handler after all other pro-
cesses have been terminated, just before filesystems are unmounted.
For this special case, we implement a “one-shot” mode in the han-
dler which, instead of forking to the background, exits after han-

dling the data currently in the log. This allows it to handle any re-
maining shutdown provenance, then return control to init to com-
plete the shutdown process.

5.4 Bootstrapping Filesystem Provenance
Intuitively, a complete provenance record contains enough infor-

mation to recreate the structure of an entire filesystem. To do this,
we need to have three things: a list of inodes, filesystem metadata
for each inode, and a list of hard links (filenames) for each inode.
Our system has a hook corresponding to each of these items. As-
suming, then, that we can collect provenance for a filesystem start-
ing from the point when it is completely empty, all of this informa-
tion will appear in the record.

There are two problems with this assumption, however. First, it
is impractical. We may connect a USB drive which has been used
elsewhere, or we may want to start collecting provenance on an
existing, populated filesystem. Second, it is actually impossible to
start with an empty filesystem. Without a root inode, which is cre-
ated by the corresponding mkfs program, a filesystem cannot even
be mounted. Unfortunately, mkfs does this by writing directly to a
block device file, which does not generate the expected provenance
data.

What we need is a way to bootstrap provenance on a populated
filesystem. In order to have a complete record for each file, we
must generate a creation event for any pre-existing inodes. We have
implemented a utility called pbang (for “provenance Big Bang”)
which does this by traversing the filesystem tree. For each new
inode it encounters, it outputs an allocation entry for the inode, a
metadata entry containing its attributes, and a link entry contain-
ing its filename and directory. For previously encountered inodes,
it only outputs a new link entry. All of these entries are writ-
ten to a file to complete the provenance record. To make a new
provenanced filesystem, we create it normally using mkfs, then run
pbang immediately afterward.

5.5 Provenance-Opaque Flag
We noticed a strange behavior in the early prototypes of Hi-Fi:

even when the system was completely idle, a continuous stream of
provenance data was being generated. Inspection of the provenance
record showed that this data described the actions of the prove-
nance handler itself. The handler would call the read function
to retrieve data from the provenance log, which then triggered the
file_permission LSM hook. The collector would record this
action in the log, where the handler would again read it, trigger-
ing file_permission, and so on. This created a large amount of
“feedback” in the provenance record.

In light of our design goals, this is technically correct behav-
ior. However, it floods the provenance record with data which
does not provide any additional insight into the system’s opera-
tion. One option for solving this problem is to make the handler
completely exempt from provenance collection. This, however, has
the potential to interfere with our ability to reconstruct the filesys-
tem. If the handler were to create or move a file without generat-
ing provenance data, we could no longer accurately reconstruct the
filesystem structure from the record. Instead, we make the handler
“provenance-opaque,” treating it as a black box which only gen-
erates provenance data if it makes any significant changes to the
filesystem.

The first piece to our solution is informing the LSM which pro-
cess is the provenance handler. To do this, we leverage the LSM
framework’s integration with extended filesystem attributes. We
identify the provenance handler program by setting an attribute
called se
urity.hifi. The “security” attribute namespace, which



is reserved for attributes used by security modules, is protected
from tampering by malicious users. When the program is executed,
the bprm_
he
k_se
urity hook examines this property for the
value “opaque” and sets a flag in the process’s credentials indi-
cating that it should be treated accordingly. In order to allow the
handler to create new processes without reintroducing the original
problem—for instance, if the handler is a shell script—this flag is
propagated to any new credentials that the process creates.

5.6 Socket Provenance
Our modifications to network socket behavior are designed to be

both transparent and incrementally deployable. To allow interoper-
ability with existing non-provenanced hosts, we place packet iden-
tifiers in the IP Options header field. In order to ensure that every
packet sent by our system is marked appropriately, we implement
two Netfilter hooks, which process packets at the network layer.
The outgoing hook labels each packet with the correct identifier
just before it encounters a routing decision, and the incoming hook
reads this label just after the receiver decides the packet should be
handled locally. Note that even packets sent to the loopback address
will encounter both of these hooks.

In designing the log entries for socket provenance, we aim to
make the reconstruction of information flows from multiple system
logs as simple as possible. When the sender and receiver are on
the same host, these entries should behave the same as reads and
writes. When they are on different hosts, the only added require-
ment should be a partial ordering placing each send before all of
its corresponding receives. Lamport clocks [12] would satisfy this
requirement.

The problem with this is that the so
ket_re
vmsg hook, which
was designed for access control, executes before a process attempts
to receive a message. This may occur before the corresponding
so
ket_sendmsg hook is executed. To solve this, we place a
so
ket_post_re
vmsg hook after the message arrives and before
it is returned to the receiver, and we use this hook to generate the
entry for receiving a message.

We implement support for TCP and UDP sockets to demonstrate
provenance for both connection-mode and connectionless sockets,
as well as both stream and message-oriented sockets. Support for
the other protocols and pseudo-protocols in the Linux IP stack, such
as SCTP, ping, and raw sockets, can be implemented using similar
techniques. For example, SCTP is a sequential packet protocol,
which has connection-mode and message semantics.

5.6.1 TCP Sockets

TCP and other connection-mode sockets are complicated in that
a connection involves three different sockets: the client socket, the
listening server socket, and the server socket for an accepted con-
nection. The first two are created in the same way as any other
socket on the system: using the so
ket function, which calls the
so
ket_
reate and so
ket_post_
reate LSM hooks. How-
ever, sockets for an accepted connection on the server side are cre-
ated by a different sequence of events. When a listening socket
receives a connection request, it creates a “mini-socket” instead
of a full socket to handle the request. If the client completes the
handshake, a new child socket is cloned from the listening socket,
and the relevant information from the mini-socket (including our
IP options) is copied into the child. In terms of LSM hooks, the
inet_
onn_request hook is called when a mini-socket is created,
and the inet_
sk_
lone hook is called when it is converted into a
full socket. On the client side, the inet_
onn_established hook
is called when the SYN+ACK packet is received from the server.

Our system must treat the TCP handshake with care, since there
are two different sockets participating on the server side. We create
a unique identifier for the mini-socket in the inet_
onn_request
hook, and this identifier is later copied directly into the child socket.
The client must then be certain to remember the correct identifier,
namely, the one associated with the child socket. The first packet
that the client receives (the SYN+ACK) will carry the IP options
from the listening parent socket. To keep this from overriding the
child socket, we use the inet_
onn_established hook to clear
the saved identifier so that it is later replaced by the correct one.

5.6.2 UDP Sockets

Since UDP sockets are connectionless, we must use an LSM
hook to assign a different identifier to each datagram. In addi-
tion, this hook must run in process context, so that we can record
the identifier of the process which is sending or receiving. The
only existing LSM socket hook with datagram granularity is the
so
k_r
v_skb hook, but it is run as part of an interrupt when
a datagram arrives, not in process context. The remaining LSM
hooks are placed with socket granularity; therefore, we must place
two additional hooks to mediate datagram communication.

The construction and delivery semantics for UDP datagrams are
not as straightforward as they may appear at first. An intuitive
assumption would be that each datagram is constructed by a sin-
gle process and received by a single process, but this is not the
case. If the file descriptor of the receiving socket is shared be-
tween processes, they can all receive the same datagram by using
the MSG_PEEK flag. In fact, multiple processes can also contribute
data when sending a single datagram by using the MSG_MORE flag
or the UDP_CORK socket option. Because of this, placing send and
receive hooks for UDP is a very subtle task.

Since we consider each datagram an independent entity, the cru-
cial points to mediate are the addition of data to the datagram and
the reading of data from it. The Linux IP implementation includes
a function which is called from process context to append data to an
outgoing socket buffer. This function is called each time a process
adds data to a corked datagram, as well as in the normal case where
a single process constructs a datagram and immediately sends it.
This makes it an ideal candidate for the placement of the send hook,
which we call so
ket_dgram_append. Since this hook is placed
in network-layer code, it can be applied to any message-oriented
protocol and not just UDP.

We also place the receive hook in protocol-agnostic code, for
similar flexibility. The core networking code provides a function
which retrieves the next datagram from a socket’s receive queue.
UDP and other message-oriented protocols use this function when
receiving, and it is called once for each process that receives a given
datagram. This is an ideal location for the message-oriented re-
ceive hook, so we place the so
ket_dgram_post_re
v hook in
this function.

6. EVALUATION
The motivation behind this work is to determine whether whole-

system provenance collection can provide useful information in
a security context. We demonstrate this in two ways. First, we
show that a number of typical malware behaviors appear plainly
in a whole-system provenance record. In particular, when mal-
ware spreads from one provenanced host to another, we can observe
the communication between the infected process on one host and
the target process on the other using socket provenance. Second,
we demonstrate that the performance overhead of Hi-Fi is small
enough that it could be used in practice.



6.1 Recording Malicious Behavior
Our first task is to show that the data collected by Hi-Fi is of

sufficient fidelity to be used in a security context. We focus our in-
vestigation on detecting the activity of network-borne malware. A
typical worm consists of several parts. First, an exploit allows it to
execute code on a remote host. This code can be a dropper, which
serves to retrieve and execute the desired payload, or it can be the
payload itself. A payload can then consist of any number of differ-
ent actions to perform on an infected system, such as exfiltrating
data or installing a backdoor. Finally, the malware spreads to other
hosts and begins the cycle again.

For our experiment, we chose to implement a malware genera-
tor which would allow us to test different droppers and payloads
quickly and safely. The generator is similar in design to the Metas-
ploit Framework [13], in that you can choose an exploit, dropper,
and payload to create a custom attack. However, our tool also in-
cludes a set of choices for generating malware which automatically
spreads from one host to another; this allows us to demonstrate
what socket provenance can record about the flow of information
between systems. The malware behaviors that we implement and
test are drawn from Symantec’s technical descriptions of actual
Linux malware[23].

To collect provenance data, we prepare three virtual machines
on a common subnet, all of which are running Hi-Fi. The attacker
generates the malware on machine A and infects machine B by ex-
ploiting an insecure network daemon. The malware then spreads
automatically from machine B to machine C. For each of the mali-
cious behaviors we wish to test, we generate a corresponding piece
of malware on machine A and launch it. Once C has been infected,
we retrieve the provenance logs from all three machines for exam-
ination.

Each malware behavior that we test appears in some form in the
provenance record. In each case, after filtering the log to view only
the vulnerable daemon and its descendants, the behavior is clear
enough to be found by manual inspection. Below we describe each
behavior and how it appears in the provenance record.

6.1.1 Persistence and Stealth

Frequently, the first action a piece of malware takes is to ensure
that it will continue to run for as long as possible. In order to persist
after the host is restarted, the malware must write itself to disk in
such a way that it will be run when the system boots. The most
straightforward way to do this on a Linux system is to infect one of
the startup scripts run by the init process. Our simulated malware
has the ability to modify r
.lo
al, as the Kaiten trojan does. This
shows up clearly in the provenance log:

[6fe℄ write B:/et
/r
.lo
al

In this case, the process with provid 0x6fe has modified r
.lo
al

on B’s root filesystem. Persistent malware can also add cron jobs
or infect system binaries to ensure that it is executed again after
a reboot. Examples of this behavior are found in the Sorso and
Adore worms. In our experiment, these behaviors result in similar
log entries:

[701℄ write B:/bin/ps

for an infected binary, and

[710℄ write B:/var/spool/
ron/root.new

[710℄ link B:/var/spool/
ron/root.new to

B:/var/spool/
ron/root

[710℄ unlink B:/var/spool/
ron/root.new

for an added cron job.

Some malware is even more clever in its approach to persistence.
The Svat virus, for instance, creates a new C header file and places
it early in the default include path. By doing this, it affects the code
of any program which is subsequently compiled on that machine.
We include this behavior in our experiment as well, and it appears
simply as:

[707℄ write B:/usr/lo
al/in
lude/stdio.h

6.1.2 Remote Control

Once the malware has established itself as a persistent part of
the system, the next step is to execute a payload. This commonly
includes installing a backdoor which allows the attacker to control
the system remotely. The simplest way to do this is to create a
new root-level user on the system, which the attacker can then use
to log in. Because of the way UNIX-like operating systems store
their account databases, this is done by creating a new user with a
UID of 0, making it equivalent to the root user. This is what the
Zab trojan does, and when we implement this behavior, it is clear
to see that the account databases are being modified:

[706℄ link (new) to B:/et
/passwd+

[706℄ write B:/et
/passwd+

[706℄ link B:/et
/passwd+ to B:/et
/passwd

[706℄ unlink B:/et
/passwd+

[706℄ link (new) to B:/et
/shadow+

[706℄ write B:/et
/shadow+

[706℄ link B:/et
/shadow+ to B:/et
/shadow

[706℄ unlink B:/et
/shadow+

A similar backdoor technique is to open a port which listens for
connections and provides the attacker with a remote shell. This ap-
proach is used by many pieces of malware, including the Plupii
and Millen worms. Our experiment shows that the provenance
record includes the shell’s network communication as well as the
attacker’s activity:

[744℄ exe
 B:/bin/bash -i

[744℄ so
ksend B:173

[744℄ so
kre
v unknown

[744℄ so
ksend B:173

[751℄ exe
 B:/bin/
at /et
/shadow

[751℄ read B:/et
/shadow

[751℄ so
ksend B:173

[744℄ so
ksend B:173

[744℄ so
kre
v unknown

[744℄ so
ksend B:173

[744℄ link (new) to B:/testfile

[744℄ write B:/testfile

Here, the attacker uses the remote shell to view /et
/shadow and
to write a new file in the root directory. Since the attacker’s sys-
tem is unlikely to be running a trusted instance of Hi-Fi, we see
“unknown” socket entries, which indicate data received from an
unprovenanced host. Remote shells can also be implemented as
“reverse shells,” which connect from the infected host back to the
attacker. Our tests on a reverse shell, such as the one in the Jac.8759
virus, show results identical to a normal shell.

6.1.3 Exfiltration

Another common payload activity is data exfiltration, where the
malware reads information from a file containing password hashes,
credit card numbers, or other sensitive information and sends this
information to the attacker. Our simulation for this behavior reads
the /et
/shadow file and forwards it in one of two ways. In the
first test, we upload the file to a web server using HTTP, and in the
second, we write it directly to a remote port. Both methods result
in the same log entries:



[85f℄ read B:/et
/shadow

[85f℄ so
ksend B:1ae

Emailing the information to the attacker, as is done by the Adore
worm, would create a similar record.

6.1.4 Spread

Our experiment also models three different mechanisms used by
malware to spread to newly infected hosts. The first and simplest is
used when the entire payload can be sent using the initial exploit.
In this case, there does not need to be a separate dropper, and the
resulting provenance log is the following (indentation is used to
distinguish the two hosts):

[807℄ read A:/home/evil/payload

[807℄ so
ksend A:153

[684℄ so
kre
v A:153

[684℄ write B:/tmp/payload

The payload is then executed, and the malicious behavior it imple-
ments appears in subsequent log entries.

Another mechanism, used by the Plupii and Sorso worms, is to
fetch the payload from a remote web server. We assume the web
server is unprovenanced, so the log once again contains “unknown”
entries:

[7ff℄ read A:/home/evil/dropper

[7ff℄ so
ksend A:15b

[685℄ so
kre
v A:15b

[685℄ write B:/tmp/dropper

[6ef℄ so
ksend B:149

[6ef℄ so
kre
v unknown

[6ef℄ write B:/tmp/payload

If the web server were a provenanced host, this log would con-
tain host and socket IDs in the so
kre
v entry corresponding to a
so
ksend on the server.

Finally, to illustrate the spread of malware across several hosts,
we tested a “relay” dropper which uses a randomly-chosen port
to transfer the payload from each infected host to the next. The
combined log of our three hosts shows this process:

[83f℄ read A:/home/evil/dropper

[83f℄ so
ksend A:159

[691℄ so
kre
v A:159

[691℄ write B:/tmp/dropper

[6f5℄ exe
 B:/tmp/dropper

[844℄ read A:/home/evil/payload

[844℄ so
ksend A:15b

[6f
℄ so
kre
v A:15b

[6f
℄ write B:/tmp/payload

[74e℄ read B:/tmp/dropper

[74e℄ so
ksend B:169

[682℄ so
kre
v B:169

[682℄ write C:/tmp/dropper

[6e6℄ exe
 C:/tmp/dropper

[750℄ read B:/tmp/payload

[750℄ so
ksend B:16b

[6ed℄ so
kre
v B:16b

[6ed℄ write C:/tmp/payload

Here we can see the attacker transferring both the dropper and the
payload to the first victim using two different sockets. This victim
then sends the dropper and the payload to the next host in the same
fashion.

6.1.5 Full Simulation

For a comprehensive test, we use our tool to implement a full
simulation of the Linux Adore worm according to Symantec’s de-
scription. Our provenance record captures the entire life cycle of
the worm:

System call Baseline With Hi-Fi Overhead

open 13.8 13.8 0.0%
close 10.6 10.7 1.0%
read 13.7 14.6 6.2%
write 21.4 21.3 -0.2%
creat 24.1 24.4 1.1%
rename 19.8 20.0 0.9%
unlink 36.4 36.7 0.7%
clone 74.6 74.0 -0.7%
execve 150.3 155.1 3.2%

Table 2: Mean execution time for system calls (µs)

� The compromised daemon downloading and extracting the
payload tarball

� Execution of start.sh, which activates the payload

� Replacement of the ps binary with a trojaned version, and
copying the original ps to /usr/bin/adore

� Installation of a cron job which kills the worm

� Replacement of klogd with a backdoor shell

� Emailing of the /et
/shadow file, process list, and network
information to the attacker

� Infection of the next victim

We also successfully capture a sample backdoor session, in which
the attacker views a user’s command-line history and downloads an
updated payload.

6.2 Performance
In addition to showing that Hi-Fi records malicious activity, we

also wish to show that it does so without significantly degrading
system performance. To this end, we benchmark a system running
a stock Arch Linux kernel (version 3.2.13), then benchmark the
same system with Hi-Fi compiled in. Our test system has two 2.30-
GHz quad-core AMD Opteron processors, 16GB of RAM, and two
73GB hard disks in a RAID 0 array.

We first evaluate performance overhead at the system-call level
using microbenchmarks. LMbench is frequently used for Linux
microbenchmarks, but our initial results from this tool were incon-
sistent. Instead, we create a small program which exercises the ma-
jor file and process operations. We then use the stra
e utility to
measure the time spent in various system calls over a large number
of executions of this program. The results of these benchmarks are
summarized in Table 2. For the system calls measured, the over-
head is at most 6.2%, with most calls within 1% of the baseline.

To demonstrate the overall impact on system performance, we
also run two macrobenchmarks customarily used in provenance
system evaluation: a Linux kernel build, which evaluates a typical
combination of process execution and file manipulation; and Post-
Mark [11], which specifically stresses filesystem and disk trans-
actions. We generate statistics from multiple executions of each
benchmark using the Phoronix Test Suite utility [17]. With an un-
modified kernel, our test system takes an average of 107 seconds
to run the kernel-build benchmark. With Hi-Fi, this increases to
110 seconds, showing an overhead of only 2.8%. Performance on
disk-heavy operations is unchanged, as PostMark achieves 2,083
transactions per second in both cases.



7. CONCLUSION
We have presented Hi-Fi, a system which applies the reference

monitor concept to collect a high-fidelity provenance record suit-
able for security applications. We show that this record can be
used to observe the behavior of malware, not only within a single
host, but also across multiple provenanced hosts. Furthermore, we
demonstrate that our implementation imposes less than 3% over-
head on representative workloads and a similarly small overhead in
system-call microbenchmarks.

We believe that Hi-Fi will provide a solid platform for future
provenance research. For example, we do not explore options for
working with provenance data after it is collected, but the modu-
lar design of Hi-Fi will make it simple to evaluate many different
approaches to processing, storage, and querying. We have shown
that complete system-level and socket provenance can provide deep
insight into the design, performance, and security of systems and
networks, and we believe that many other significant discoveries
are yet to be made in this area.
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