New Side Channels Targeted at Passwords

Albert Tannous'

T The Pennsylvania State University

University Park, PA 16802

{tannous,mhassan,smclaugh,tjaeger} @cse.psu.edu

Abstract

Side channels are typically viewed as attacks that leak
cryptographic keys during cryptographic algorithm pro-
cessing, by observation of system side effects. In this paper,
we present new side channels that leak password informa-
tion during X Windows keyboard processing of password
input. Keylogging is one approach for stealing passwords,
but current keylogging techniques require special hardware
or privileged processes. However, we have found that the
unprivileged operation of modifying the user key mappings
for X Windows clients enables a side channel sufficient for
unprivileged processes to steal that user’s passwords, even
enabling the attacker to gain root access via sudo. We suc-
cessfully tested one version on Linux 2.6, we were able to
obtain a high degree of control over the scheduler, and thus
we can obtain accurate timing information. A second ver-
sion (logon detection) works without depending on accurate
clocks or cache effects. Thus, in addition to demonstrating
new side channels, we show that (a) side channels cannot be
eliminated by removing accurate clocks or hardware cache
mechanisms (b) side channels are of continued concern for
computer security as well as cryptographic processing.

1. Introduction

Computer security has historically been focused on pre-
venting untrusted programs from obtaining access to infor-
mation that would violate security policy, where the pol-
icy is realized in the form of Mandatory Access Controls
(MAC) [16]. Although Mandatory Access Controls are ef-
fective for control of the system designed communication
interfaces, it has long been known that covert channels [6]
can obviate this protection and lead to security policy vi-
olations. A covert channel is defined as a communication
channel between two entities that does not use the system
defined communication interfaces. For example, one pro-
cess can manipulate the disk in order to send information

Jonathan Trostlef Mohamed Hassan'

Stephen E. McLaughlin® Trent Jaeger'

' Johns Hopkins University APL
Laurel, MD 20723
jonathan.trostle @jhuapl.edu

to another process, where the security policy would prevent
normal communication between these processes.

A related threat, usually in the context of cryptographic
processing, is side channels. Here untrusted malicious pro-
grams are able to observe some aspects of a shared system
and obtain information about cryptographic keys due to the
side effects of cryptographic processing (the cryptographic
process is trusted and does nothing to aid the malicious pro-
cess in contrast to a covert channel).

With the exception of the Tenex flaw [1, 7], side chan-
nels are primarily the concern of cryptographic algorithm
developers, and covert channels are of concern to computer
security design and development. Thus side channels have
largely not been a concern to computer security. In this
paper, we present side channels that disclose information
about user passwords, and thus we show that side channels
continue to be of concern for computer security design. (In
current commodity OS-based systems, there are more effi-
cient attacks, but side channels are a concern for systems
with more advanced security features).

1.1. Related Work

One of the earliest examples of a side channel is the
Tenex flaw [1, 7] where passwords are vulnerable since
they were checked one character at a time, and process-
ing stopped at the first incorrect character. Thus an attacker
could guess password characters based on the amount of
time needed to process the password.

More recently, Kocher demonstrated timing attacks
against RSA and other public key algorithms [5]. The
papers [12, 11] also demonstrate cryptographic side chan-
nels against RSA, where [2, 9] demonstrate side channels
against AES. Countermeasures against cache based chan-
nels are presented in [10, 17].

Trostle [14] presents a side channel against the Xlock
program, using information associated with X Windows
processing. [14] shows that keyboard interrupts and X pro-
cessing can be detected and measured by an unprivileged

process running on the system. Classical covert channel
countermeasures [3, 15, 4] will have some effectiveness in
limiting or closing side channels as well. In particular, [3]
is aimed at removing accurate clocks which many channels
depend on.

1.2. Our Results

In this paper, we present side channels that disclose in-
formation about user passwords. These channels leak pass-
word information during X Windows keyboard processing
of password input. We demonstrate that it is possible for
an unprivileged process to steal a user’s password using the
following sequence of steps: (1) remap that user’s X Win-
dow key map to generate a measurable timing side channel
for keyboard entry processing (2) that the effects of this side
channel can be measured by an unprivileged process exter-
nal to the victim; and (3) use these measurements to guess a
password from an unprivileged process without access to
the password file. We show that this side channel is an
appropriate mechanism to extract passwords from X client
programs (e.g., screensavers and command line programs).
The key facet of this attack is that it can be executed by un-
privileged processes, rather than requiring privileged pro-
cess access of typical keyloggers, hardware-based attacks,
such as JitterBugs [13], or unauthorized access to X Win-
dows processing directly. Even if all of these approaches are
prevented, this side channel may still be leveraged to obtain
access to a user’s password, including users who may have
the privilege to use this password for sudo processing.

Our first attack is based on a remap timing channel,
and we demonstrate an implementation of an unprivileged,
multi-threaded attack process on a Linux 2.6 system. With
the 2.6 scheduler, we are able to obtain a high degree of
control over the scheduler, and thus we can obtain highly
accurate timing information. In particular, we have imple-
mented a multithreaded timing program which is able to ac-
curately time run durations of other interactive processes.
It it likely that this capability has other applications. Our
second channel, although noisy, is effective on quiescent
systems and is able to obtain enough information about an
eight character password to make a subsequent guessing at-
tack tractable. We have successfully tested it on a Linux 2.4
kernel system. Our second algorithm is ineffective on our
2.6 system. Both of these channels scale well as password
length increases. We also present results for a 3rd channel:
the logon detection channel. This channel simply detects
whether a given character is in the password by determin-
ing whether an initial logon is successful or not. In other
words, a given character is remapped, prior to password en-
try, and the character is not in the password if and only if the
initial logon is successful. All attacks are performed using
only unprivileged processes.

The basic mechanism for our side channels leverages
the X Windows keyboard remapping capability (using the
xmodmap command). We can remap keys or a subset of
keys to a character that requires a longer time for X pro-
cessing. Thus if the password contains the remapped key,
then that will be detectable by an untrusted program based
on the additional processing time. The user will be un-
able to detect that the key has been remapped, since the
remapped key is not echoed to the terminal. However, if
the password contains a remapped key, then the password
will be invalid. The attacker must immediately remap the
keys back to the pre-existing configuration so that the sec-
ond logon succeeds. If this attack occurs infrequently, then
it will not be detected by the user. Also, when the attack
only remaps keys not contained in the password, then those
runs will not cause login failures. This latter channel (the
logon detection channel), has the advantage that it does not
depend on the hardware cache and is also effective in the
absence of accurate clocks. Thus countermeasures aimed at
removing accurate clocks [3] or the hardware cache mecha-
nism for side channels [10, 17] will not effect this channel.
A limitation of the logon detection channel is that it does
not give information about which password characters are
in which positions; thus a follow-up guessing attack will re-
quire more time. It is unlikely to be effective against pass-
words longer than 9 characters, unless combined with some
other attack.

As an example of the remap timing channel, suppose the
attacker remaps the ’a’ key and the user password contains
one 'a’ as well as other characters. Then the attacker pro-
gram can time the X Windows processing for each password
character. The attacker will see that one character requires
a longer processing time and will conclude that this charac-
ter in the password is the ’a’ character. Both unprivileged
user and the root passwords can be targeted with these at-
tacks. This remap timing side channel is more efficient than
the original Tenex flaw attack, since it samples one or more
keys across multiple password characters during a single lo-
gon.

We have conducted experiments that validate these chan-
nels on the Linux operating system with X Windows. In
principle, these attacks can also be carried out on other op-
erating systems that support keyboard remapping, such as
the Windows operating system.

1.3. Organization

The paper is organized as follows: Section 2 covers some
preliminaries including X Windows background. Section 3
overviews our remapping side channels. In Section 4, we
show that the remap timing channel exists and can be used
to determine passwords from an unprivileged process on
Linux 2.6. We also briefly examine this channel on a sys-

tem with a different scheduler, Linux 2.4. In Section 5,
we present the logon detection channel which leverages the
same remapping mechanism to identify password charac-
ters based on login failures. Section 6 covers guessing at-
tacks, as we do not have access to the password file. In Sec-
tion 7, we briefly discuss countermeasures. In Section 8,
we briefly discuss the impact of user input errors and other
issues. We conclude in Section 9.

2. Side Channels in X Windows

We now briefly examine X Window keyboard input pro-
cessing. In the X Windows system, the X server process
receives mouse and keyboard input interrupts from the op-
erating system. The X server then sends these X events to
interested X clients which process the events. To enable
alternative keyboard layouts, the xmodmap utility allows
(unprivileged) users to remap the keyboard. Thus the map-
ping between keys and characters can be changed. There are
three mappings that occur between the time a key is pressed,
and the time a character is displayed on the screen in the X
Windows system [8]. They are as follows:

1. Physical keys to keycodes: This translation is X
server dependent, and client processes cannot detect
this. We will not mention it any further.

2. Keycodes to keysyms: This mapping can be modified
by the X clients themselves, but applies system wide.
As we will see, the remapping utility (xmodmap) en-
ables the side channels. The keysym is a logical entity
which carries the meaning of a keypress. Examples
of keysyms include XK Return and XK Space, which
represent the return key and the space bar respectively.

3. Keysyms to strings: A keysym itself contains no in-
formation about whether or not a character should be
displayed for a given keypress or how. It is up to the
client process to work with the X server to perform
the keysym to string mapping, where the string is zero
or more characters to be printed for a given keypress.
This translation is performed in the X client by the X
library function XLookupString. We noticed that the
XLookupString has two code paths for different types
of symbols. One path does translations for ascii char-
acters and the other for unicode characters. The path
for unicode characters is longer, but also importantly,
not leveraged for normal password characters. This
unicode code path in XLookupString will form the ba-
sis for our first two timing channels.

The combination of our ability to remap the keycode to
keysym mapping in the X server and the presence of this
extended code path in XLookupString provides the basis for

a timing channel that an adversary could leverage. An un-
privileged process, under the control of an adversary, may
remap a keycode using xmodmap to a keysym that corre-
sponds to a unicode character, thus resulting in the execu-
tion of this extended code path. Further, since passwords
almost always consist of ascii characters only (at least in
the US), the execution of this code path will be infrequent,
so a significant instruction cache impact will be likely.

As aresult, if the adversary can setup the system to cause
such overheads and effectively measure the delays inherent
to such overheads, then the adversary can detect when a
victim pressed a key that has been remapped, enabling pre-
diction of the key. Designing and implementing an attack
approach that enables these functions is non-trivial as we
describe in the following section.

3. Remapping Side Channels

In this section, we overview remapping and its applica-
tion to side channels. At a high level, the adversary’s goal is
to learn information about characters in a secret string (e.g.,
password) by remapping some keys on the keyboard. De-
pending on the X client and channel, the adversary must de-
termine: (1) what is a remapping that will enable the execu-
tion of the extended code path in XLookupString, (2) when
to initially remap the keyboard (prior to password entry), (3)
how the measure the channel, (4) when to map the keyboard
back (after the password has been entered), (5) how to de-
termine the password from the measurements. These tasks
are challenging; remap and map back must occur at the right
times else the attack will fail or be discovered. Measuring
is also potentially challenging, depending on the channel.

For the remap timing channel, our strategy is to remap
a subset of keys to a character that requires a noticeably
longer time for X Windows processing. The third X Win-
dows mapping described above, keysyms to strings, is rele-
vant here. We remap the selected keys to the euro: 0x20ac
(hexadecimal), since the euro exercises the extended code
path described above (actually, the euro is deep in this
path). Also, the euro is unlikely to be a password character.

In addition, the first time the unicode code path is taken
a significant number of instruction cache misses result, fur-
ther increasing the processing time. Our experiments val-
idate this hypothesis; roughly 10000-20000 additional cy-
cles are needed to map the euro keysym the first time.

The 3rd X mapping occurs in the X client. Thus if
we are able to time the X client processing, then we will
likely notice whether the associated key has been remapped.
Our strategy is to run a timing process (with one or more
threads) both prior to the X client, and after the X client.

In the first channel below (Linux 2.6), the timing process
is able to time both the X server and the X client separately
(see Figure 2). This results in accurate measurements, since

the X client processing duration is what we want to mea-
sure. In the second channel described below (Linux 2.4),
the timing process will time both the X server and the X
client (see Figure 1).

We call the other remapping channel mentioned above,
that detects whether logon is successful or not, the logon
detection channel. This channel is noiseless, and if used
alone, can narrow the password space to the set of charac-
ters contained in the password.

4. Remap Timing Channels

We present the remapping timing side channels in this
section. First, we describe an initial experiment with one
process that failed to detect the remapping channel. We
then performed a second, detailed timing experiment that
confirmed the existence of the remapping channel. We find
that the remapping channel is caused by a combination of
longer code path to process unicode and the overhead due
to instruction cache misses when this code path is taken.
In the third experiment, we show that a multi-threaded at-
tack process can successfully measure the remapping side
channel. The use of a multi-threaded attack process enables
us to maintain the scheduling priority of the attack process-
ing, so we can ensure that it runs directly prior to and after
the X client victim. Our attack depends on the Linux 2.6
scheduling algorithm. We examine the attack on Linux 2.4
to discuss the impact of a different scheduler.

The machine used for the Linux 2.6 experiments has
a Intel Pentium M-740 (1.73GHz) processor and runs
the Ubuntu 6.10 operating system (Linux Kernel version
2.6.17-11). Our 2.6 system is a wireless laptop.

We ran experiments using a generic X client that accepts
keyboard entry like a program for entering a password, such
as su, login, or the SSH client. It does not include all of
the display functions of screen locking programs, such as
xscreensaver, although the amount of display update
activity is not great when a password is being entered. Our
X client processes user keyboard events that are sent by the
X server. It works by enabling the user to type a string (e.g.,
a password), and it prints out the received character string
after receiving a return character.

4.1. Single Process Experiment

In this section, we show that a single process is unable
to detect remapped keys due to noise on the system. Our
initial (Linux 2.6) experiment used a single timing process
that detects and measures other process activity by sampling
a timer in a loop. Thus when the timing process detects a
large delay between consecutive timer samples, it can reli-
ably associate this duration with other process activity. As
discussed in Section 3, we remap one or more keys to the

keyboard

interrupt X server X client

[0 timing process time

Figure 1. Scheduler Timeline with One Timing
Process and X Windows Processing: a single
timing process follows both X server and X
client, resulting in noisy measurements.

euro keysym in order to detect the longer processing asso-
ciated with these keys.

For our experiment, we initially needed to match known
X processing events in the X client with the corresponding
observed process activity in the timing process. Without
this information, we would not know what types of process
activity durations to look for. This task was easily accom-
plished using timestamps in both the X client and the timing
process. (Note: in Section 4.3, where we perform the real
experiments against passwords, we do not use timestamps
in the X client. In other words, the X client is treated as a
fixed program that cannot be modified by the adversary.) By
matching the timestamps, we could clearly associate the X
processing events with the durations observed in the timing
process.

The first thing we observed was that the X server and
X client ran consecutively (see Figure 1). In other words,
our timing process did not run in between the X server and
X client. We determined that this was because our timing
process was CPU-intensive, so its scheduling priority was
lowered, preventing it from being scheduled before the X
client when it is ready. Other processes sometimes run in
this X processing window as well, extending the duration
between our timing measurements with unrelated process-
ing. Further, this other processing also caused variability
in X server processing times due to cache conflicts. Thus
the amount of noise prevented us from reliably detecting
remapped keys.

4.2. Confirming the Side Channel

We conducted a second experiment to determine if there
is a detectable timing channel in X key processing. We did
this in two steps. First, we measured XLookupString
directly from within the X client. The idea is that if a tim-
ing channel exists, then the X client processing times for
remapped keys, even measured within the X client, should
be demonstrably longer. We found that it consistently takes
over 15,000 additional cycles to process a remapped char-
acter. Non-remapped characers are processed in 5,000 to
7,000 cycles, while remapped ones would take over 25,000

Runl | Run2 | Run3 | Run4 | Run5
t 17411 | 18530 | 13699 | 16581 | 16095
r 11917 | 12123 | 15643 | 10424 | 13821
y 11290 | 14653 | 10735 | 14674 | 12776
euro | 37942 | 39439 | 37272 | 32001 | 37410
f 12901 | 12288 | 11615 | 15361 | 11746
i 12171 | 16296 | 15445 | 11777 | 17146
n 15950 | 11359 | 12209 | 12882 | 10830
d 12563 | 14813 | 17275 | 13609 | 14462

Table 1. Five runs containing the cycle
counts for the X client key processing of
XLookupString from an external, unprivi-
leged process where semaphores are used
to synchronize the processes. The euro char-
acter is the remapped character, and its pro-
cessing takes at least 10,000 cycles more
than any other character.

cycles.

Second, we verified that we could see this timing delay
from an external process under idealized conditions. In this
case, we have the X client and the attack program share a
semaphore, such that the X client wakes the attack program
to take timing measurements every time that the X client
completes XLookupString processing. Table 1 shows
the resultant times as measured by the timing program over
eight runs. The fourth character in a password try2find
(i.e., the ’2’) is mapped to the euro character. This table
shows that the remapped character processing takes at least
10,000 cycles more than any other character. Further, the
average difference is close to 20,000 cycles. Based on these
experiments, we are encouraged that the timing channel in
X client key processing can be measured by an unprivi-
leged, external process.

4.3. Multithreaded Experiment

In this section, we show that a multithreaded timing pro-
cess is able to detect remapped keys. The reason is that
multiple threads are able to exploit the scheduler in a man-
ner that allows the threads (or tasks) to maintain the highest
interactive priority. Thus, a timing thread will run in be-
tween the X server and the X client and the X client CPU
duration can be accurately measured.

The basic idea of this attack is as follows. We remap
the keyboard prior to user password entry by determining
a password entry program is being run (e.g., su) or that
the screen is locked (e.g., for xscreensaver). Through
maintaining several timing threads 'at high priority, we are

n Linux, tasks represent both processes and threads, so the sched-
uler treats threads as it would a process. We use the term threads to indicate
that these Linux tasks share an address space, as threads in the same pro-

keyboard

interrupt X server X client

' v /

[distinct timing tasks in Linux 2.6 time

Figure 2. Scheduler Timeline with Multiple
Timing Processes and X Windows Process-
ing: timing processes run at same priority as
X client victim, so they run both right before
and right after X client.

timer interrupt
for "clock tick"

}—EI—EHZI—EH]—&-D—EI—EHZI—EI—EI—D—»
\ f time

process whose priority decremented
-- interrupted by the timer interrupt

[other processes have their priorities incremented

Figure 3. Timing Process Priority Adjust-
ments in Linux 2.6. Only the process that is
interrupted by the timer interrupt has its pri-
ority decremented. Other processes see their
priority incremented. Thus running a large
number of timing processes results in each
maintaining high priority.

able to run timing processes both immediately before and
immediately after the X client. The processing timeline is
shown in Figure 2.

In Linux 2.6, the scheduler rewards threads that sleep
over one or more clock ticks. When a thread is awakened
from sleeping, it receives a boost to its dynamic priority
based on the amount of time that it has slept. Thus, if we run
multiple timing threads, where the threads use semaphores
to awaken each other in a synchronous manner, then most of
the time a thread will be sleeping and thus receive a bonus
vs. being decremented.

Thus, at any clock tick, one of the timing threads will be
running, so its dynamic priority will be decremented. The
other timing threads will be asleep, and they will have their
dynamic priority increased, if an increase is possible (see
Fig 3). (An increase will not be possible if the thread has
already received the maximum bonus adjustment to its pri-
ority). Thus we see that if we run n timing threads, then on
average, we expect a given thread to be eligible for a pri-
ority increment "T’l of the time, and to receive a priority
decrement % of the time.

cess would.

Runl | Run2 | Run3 | Run4 | Run5
t 47147 | 42468 | 47223 | 42488 | 47572
r 31598 | 33740 | 32462 | 30385 | 43398
y 29026 | 39900 | 35825 | 26788 | 30639
euro | 64316 | 53888 | 62909 | 59987 | 65099
f 31195 | 39115 | 32239 | 35956 | 28793
i 27953 | 33941 | 40367 | 32694 | 45323
n 40314 | 40005 | 28643 | 46316 | 33041
d 27704 | 32707 | 28644 | 29866 | 43798

Table 2. Timing the keypresses from the mul-
tithreaded attack program (timed in cycles).

In Linux 2.6, interactive threads receive a maximum
bonus of -5 to their dynamic priority. If there are more
than two timing threads, then their dynamic priorities will
tend towards their static priority minus 5 (i.e., a lower pri-
ority is better for scheduling). The X client will also tend
toward the same priority. Thus when the X client awakes
and becomes runnable (due to input from the X server), it
will be placed in a priority queue behind the existing timing
threads. Therefore, a timing thread will run immediately
prior to the X client, and another one will run after the X
client. Thus, we should obtain an accurate indication of the
remap status of the individual keys.

4.3.1 Attack Program Design

We describe the design for the Linux 2.6 attack pro-
gram. The idea is to use multiple timing threads that time
the victim X client’s processing. These threads will use
semaphores to hand-off responsibility for timing. The basic
pseudo-code skeleton for each timing thread is as follows:

while() { // timing loop

sem_wait (sem_1idl); // block awaiting
// increment of semaphore

timel = sample_the_timer ();

if(timel is in range of interest)

record timel;
sem_post (sem_1id2); // increment the
// semaphore for next timing thread

}

The results for the implementation of this approach are
shown in Table 2. Here again, we entered the string
“try2find”, with the character ‘2’ remapped. As we can
see, the remapped character stands out very clearly. Reg-
ular characters are in the range of 30,000 to 45,000 cycles.
The line for the euro character shows that the duration of
the remapped characters ranges between 55,000 and 75,000
cycles.

X Server Duration | X Client Duration | Remap Status
228086 42068 Not remapped
157738 34192 Not remapped
169017 51962 Remapped

208754 37976 Not remapped
144332 27710 Not remapped
249284 42095 Not remapped
219884 45322 Not remapped

Table 3. Output Showing Remapped and Non-
Remapped Keys (timed in cycles)

4.3.2 Solving the Noise Problem

In the above attack, the problem of extraneous process-
ing exists. In particular, other activity can result in addi-
tional time durations that are in the same range as the tim-
ing measurements. Thus, we have a noisy channel where
the main noise component consists of additional measure-
ments. We have largely solved this problem by noting that
the keyboard processing consists of the X server processing
(around 150,000 to 250,000 cycles) immediately followed
by the X client processing (approximately 30,000 to 80,000
cycles). The use of this signature helps to remove most of
the noise from the channel that would be present if we only
focused on the X client durations.

Table 3 shows a typical output sequence. The left col-
umn contains X server process durations (in cycles), and the
second column contains X client process durations. These
pairs of values are readily identifiable in the timed process
durations, and our test results indicate that false positives
(consisting of a pair of values in the same range) occur very
rarely. The same is true for false negatives with the excep-
tion of the first character; occasionally we miss (a miss oc-
curs when the X client processing doesn’t immediately fol-
low an X server processing time) the X client processing for
this character since the X client’s priority may not have fully
recovered from it’s initial processing when it handles the
first password character. Succeeding characters receive the
benefit of the extra sleep time which allows the X client’s
priority to be as high as the timing threads. Also, the 1st
password character processing is more likely to suffer cache
misses vs. later characters. One of the timing threads runs
before, between, and after each pair of processing durations
in the figure.

4.3.3 When to Map Back - Identification of Return Key

Password entry is often immediately followed by a return
character. If the timing process is able to identify the return
character, then it can remap the keyboard back to the orig-
inal state at that point. In this way, the timing process will
not be detected since subsequent keyboard output will echo
in the normal manner.

H Run 1 \ Run 2 H
181469 (X) | 178566 (X)
120042 125654
198459 207160
128269 134359
95050 82294

Table 4. Return Key Signature, as seen in two
typical runs starting with X server processing
(X), measured in cycles

In our Linux 2.6 experiments, we have observed that our
X client has a consistent signature for the return key pro-
cessing. This is partially due to the fact that our X client
prints to the terminal upon reading the return. Many X
clients have similar behaviour upon successful logon. The
signature for two distinct runs is shown in Table 4.

We see an initial X server processing duration immedi-
ately followed by several other times associated with X pro-
cessing.

4.3.4 Test Results

Using the algorithm described above, we ran tests against a
generic X client on a Linux 2.6 system. Each test consists
of entering the same 8 character password. During the test,
the timing program runs and we subsequently analyzed the
results. We remapped a single key per test. Our results are
given in Table 5. The amount of noise was minimal. Our
results for the first password character were the most prob-
lematic, but otherwise the results are fairly accurate. In par-
ticular, if we throw out the first character as unreliable, then
for 84 characters transmitted, we have one error (in the 2nd
character), 4 not received characters (but we know that we
have missed these particular characters), and 79 characters
transmitted correctly, which is over a 90% success rate.

Upper case characters include both a shift key processing
time in addition to the upper case key time. The upper case
processing time is longer when the key is remapped. Al-
though we tested upper case characters, we did not actually
analyze any passwords that included upper case characters.
Nevertheless, we believe such analysis would be straight-
forward.

We also ran tests over several (up to 6) minutes to exam-
ine the priorities of our timing threads. We confirmed (using
the ps command) that the threads remained at the highest
interactive priority throughout the interval. Thus our multi-
threaded design remains priority stable.

4.3.5 Optimal Remapping Strategy

We also experimented with remapping multiple keys. When
more than one password character is remapped, the 2nd

Test | Results

1 Missed 1st character

2 No errors

3 Missed 1st character

4 1st and 2nd characters appear remapped but aren’t

5 No errors

6 7th character unknown (two closely
spaced character times) missed 4th character
(X server and X client ran consecutively)

7 No errors

8 missed 1st character, missed 8th character

9 1st character is incorrect, missed 2nd character

10 1st character is incorrect, rest are correct

11 1st character is incorrect, rest are correct

12 1st character is incorrect, rest are correct

Table 5. Test Results on Linux 2.6: Each Test
Consists of Entering Same Password

remapped character in the password will usually not require
as much additional processing time as the first character.
The reason is that the additional code will already be in the
cache. Also, modern processors will attempt to optimize
and guess ahead regarding upcoming code paths. Thus our
experiments did not show significant benefit to remapping
more than one password character at a time. Given this
constraint, there is still some advantage to remapping two
keys per test, given the high probability that only one pass-
word character will be remapped per test. With this strat-
egy, 35-40 logons are needed, on average, for an 8 charac-
ter password given a 94 character alphabet. (It is sufficient
to reduce 6 of the 8 password characters to two possibilities
each, and guess the remaining two characters - see Section 6
for guessing attacks).

4.4. Linux 2.4 Side Channel

Ideally, we would like to run timing processes or threads
immediately before the X client and immediately after it as
well. This approach gives the most accurate timing model.
The Linux 2.4 scheduling algorithm makes this approach
difficult; it is more difficult to exercise control over the
scheduler than in Linux 2.6. The reason is that it is not pos-
sible for a Linux 2.4 task to run at frequent random times
and still maintain a high dynamic priority (since it can’t
make up the priority decrements by sleeping as in Linux
2.6). We have settled on a model where a timing process
runs before the X server and then after the X client (see
Figure 1). Thus we measure the X client along with the X
server. This model results in additional noise. Nevertheless,
on a quiescent system (a standard Linux 2.4 desktop system
without additional software packages or wireless network-
ing), our experiments have resulted in narrowing the pass-
word space to the point where guessing attacks are feasible.

Due to the additional noise, we require more tests than in
the Linux 2.6 case. Due to space constraints, we omit the
details.

5. Logon Detection Channel

Here, we present a simpler, but less accurate, timing
channel that leverages the same remapping mechanism.
This channel measures login failures caused by remapping.
When a key is remapped, we observe different behavior de-
pending on whether the remapped key is in the password
or not. This channel can be measured using much coarser
timing, such as t imeofday, but it also results in less re-
duction in the password space than for the remap timing
channel.

The basic idea is to time the difference between start of
password entry and successful logon. Successful logon, say
for the su program running in an xterm, can be detected
by the existence of a newly created root shell. The start
of password entry can be detected by the fact that the su
program is running. If a single key is remapped, then lo-
gon success is determined by whether this character is part
of the typed string. Note that the time difference between
successful logon (on first try) and successful logon (on sec-
ond try) will be on the order of several seconds. Thus, this
channel will not depend on accurate clocks.

For example, a timing program can remap one key per
run. If we assume a password alphabet of 94 characters,
then we will, on average, run about 86 times to reduce the
password space to 3 bits or less per character (since we can-
not determine the position of characters in the password us-
ing this attack). Then the remainder of the space can easily
be searched by a guessing program, if we assume passwords
of about 9 characters or less (we present our guessing pro-
gram and its performance in Section 6). Thus a 9 character
password would be compromised after approximately 86 lo-
gons, plus a small amount of time for guessing.

5.1. Logon Detection Channel Algorithm

Here, we give the details for the logon detection channel
attack; our X client is su in an xterm.

We must make three decisions shown in Figure 4: (1)
when to remap a key, designated as 7; (2) when to initiate
detection of successful logon, 77 ; and (3) when to un-remap
the key, T5. The accuracy of the first decision determines
whether we can capture the first character. The accuracy
of the second decision determines whether we distinguish
between success and failure correctly. The accuracy of the
third decision determines whether we capture all characters
(i.e., do not un-remap too soon) and avoid detection (i.e., do
not un-remap too late).

For su, we determine that it is being run by checking
for the process in /proc (similarly to top). In general,
Ty should be the time to enter the password, but we may
initiate success detection earlier with little harm. For su,
success results in the creation of a new shell process. 15
should be the time to enter the password plus the time to
start entering the password again if it’s incorrect (terminal
displays error, user reads it, user starts to type again). How-
ever, we do not remap too late, or the user may notice when
she starts typing in the shell. For su, there is a delay in cre-
ating the shell process. If we detect the new shell (logon is
successful) we map the key back immediately and measure
the time expired between su detection (1) and logon de-
tection. Otherwise we map back at 75 but still must measure
the time until new shell creation.

The results of our experiments are in Table 6. They con-
firm that the above algorithm performs as expected, and we
observed no errors. The third column of the table gives the
time between detection of the su client and successful lo-
gon (observed by detection of the bash shell). Since time
durations are on the order of seconds, removal of accurate
clocks will not prevent this channel.

Although errors are unlikely, there is the possibility of
mapping the keyboard back before the user has entered
the password. Most likely the last character would be af-
fected; this character would be completely unknown to the
adversary. Thus the adversary’s guessing attack complexity
would be increased in this case (i.e., by a factor of roughly
2.5). The guessing attack would still be tractable (less than
a week).

Test | Remapped Key | Time until Logon
in Password?

1 Yes 22.1 seconds
2 Yes 17.3 seconds
3 Yes 19.7 seconds
4 Yes 19.6 seconds
5 Yes 16.3 seconds
6 No 7.8 seconds
7 No 6.1 seconds
8 No 6.25 seconds
9 No 6.6 seconds
10 No 6.2 seconds

Table 6. Test Results Confirming Logon De-
tection Channel

5.2. Optimal Remapping Strategy

The adversary can select the number of keys to remap
for each experiment. The optimal strategy is for the adver-
sary to remap a small number of keys per experiment, given
the constraint of limiting the number of remap-caused lo-
gon failures per unit time (e.g., suppose one remap caused

Remap Un-remap
key (TO) key (T2)
}—EH:H client HH clent H H client }—»
f . time
Detect /bin/su Start to detect
running new shell (T1)

Figure 4. Logon Detection: Decision points
are when to remap key (7;), when to look for
success (77), and when to un-remap key (7%).

logon failure per week is permissible). Intuitively, remap-
ping a larger set of keys, S, results in more remap-caused
logon failures since S has a higher probability of intersect-
ing the password. Then subsequent tests will need to nar-
row down within the set S to determine the actual charac-
ters within the password. On the other hand, if the keys in S
were remapped one per test, then the majority of tests would
not cause logon failures and can be executed without extra
delays between tests. Also, this latter strategy avoids the
overhead of the initial logon failure. In the appendix, we
formalize this notion and demonstate an optimal strategy
that remaps a single key per test, given suitable paramaters.

6. Guessing Attacks and Target Environments

For the timing experiments above, it is more efficient
to reduce the possible password space to a size such that
the password can easily be guessed, vs. attempting to com-
pletely determine the password via the timing experiments.
The reason is that the experiments can only be run as of-
ten as the user performs a logon (at most several times per
day). The main constraint is that the guessing program must
be unprivileged.

To test the rate of password guessing, we wrote a guess-
ing program, pass, that uses the su program as a password
oracle. We used Expect to implement pass. We also wrote a
Perl script which creates many parallel instances of Expect
where each one sends different passwords to su. We tested
the script to measure the password guessing rate, and this
rate is used to find the average time to guess a password in
the reduced keyspace.

The average guessing rate using this script is 90 guesses
per second on the Linux 2.6 machine described above. By
implementing the scripts in a lower level language such as
C, we can obtain a significant performance improvement.
For our estimates, we have assumed 100 guesses per sec-
ond, and then reduced this number to 80 guesses per second
based on the (simplified) assumption that our guessing pro-
gram would consume approximately 80% of the CPU.

7. Countermeasures

A full exploration of countermeasures is beyond the
scope of this paper. As mentioned above, the logon detec-
tion channel cannot be defeated by eliminating the hardware
cache mechanism [10, 17]. Also, removing accurate clocks
[3, 4] is unlikely to close this channel either.

One potential countermeasure is to use a trusted path
mechanism (which is invoked by the user using a special
key sequence). The keyboard can be remapped to a default
configuration once the trusted path processing has been ini-
tiated. The original keyboard configuration can be restored
upon exiting trusted path processing. During trusted path
processing, only trusted processes should be allowed to run.

More generally, there is a need for methodologies that,
instead of focusing on closing a particular channel, give
generalized confidentiality assurance.

8. Discussion

Our Linux 2.6 timing framework may be of indepen-
dent interest. It gives a task (thread) level timing capability
(tasks are the scheduling unit in Linux 2.6). In other words,
it allows us to accurately measure the CPU usage of other
tasks on the system. Using the particular characteristics of
X Window processing, we have been able to measure the
CPU usage of a target X client.

We now discuss errors resulting from user keyboard en-
try mistakes. For logon detection, the most likely error is a
mis-type of a key that is not remapped, causing it to acci-
dentally be added to the adversary’s password character set.
The impact is roughly a doubling of the search space which
is acceptable for one or two errors. For the other channels,
the main impact would be if a remapped key is mistakenly
entered in place of a non-remapped key. This event is very
unlikely if only one or a small number of keys are remapped
at a time. If it did occur, it would force additional tests, or
the effects could be obviated by combining with the logon
detection channel.

We did not test on a dual-core system. The logon detec-
tion channel should work as is on a dual-core system. The
basic remap channel may require modifications such as run-
ning an additional process or additional threads. We leave
this topic as future work.

For the logon detection channel, there is an HTTPS ver-
sion (password authentication over a TLS/SSL channel).
A local process can remap the keyboard while a network
eavesdropper confederate can observe whether logon is suc-
cessful on the HTTPS server. Potential issues include when
to initially remap the keyboard and what type of follow-up
attack is possible in order to disclose the password. We
leave this topic as future work.

9. Conclusions

We have demonstrated new side channels on multiple
versions of the Linux operating system, aimed at password
disclosure. These channels limit the number of times a pass-
word can be used before disclosure. These channels require
a locally running, unprivileged, process on the same host
which the user enters keyboard input on. The mechanism
for the channels is the X Windows keyboard remapping util-
ity. One channel does not depend on the hardware cache.

The Linux 2.6 scheduler is easier to control than the
Linux 2.4 scheduler. Our work reinforces the notion that
side channels are of concern to both cryptographers and
computer security designers. Future work includes ap-
proaches that are capable of demonstrating confidential-
ity in a general manner rather than simply closing specific
channels.

References

[1] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Mur-
phy, Raymond S. Tomlinson, TENEX, A Paged Time
Sharing System for the PDP-10 Communications of
the ACM, Vol. 15, pp. 135-143, March 1972.

[2] D.J. Bernstein. Cache-timing Attacks on AES.
http://cr.yp.to/antiforgery/cachetiming-200504 14.pdf

[3] Wei Hu. 1991, Reducing Timing Channels with Fuzzy
Time. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, May 1991, Oakland, CA.

[4] Wei Hu. Lattice Scheduling and Covert Channels. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1992, Oakland, CA.

[5] Paul C. Kocher. Timing attacks on implementations
of diffie-hellman, rsa, dss, and other systems. In
CRYPTO, pp. 104-113, 1996.

[6] Butler W. Lampson. A note on the confinement prob-
lem. Communications of the ACM, v.16 n.10, pp.613-
615, Oct. 1973.

[71 B. W. Lampson. Hints for computer system design.
ACM Operating Systems Review, 15(5):33-48, Oct.
1983.

[8] Adrian Nye. Xlib Programming Manual. Volume 1.
O’Reilly, 1992.

[9] D. A. Osvik, A. Shamir and E. Tromer. Cache attacks
and Countermeasures: the Case of AES. Cryptology
ePrint Archive, Report 2005/271, 2005.

[10] D. Page. Partitioned Cache Architecture as a Side-
Channel Defense Mechanism. Cryptology ePrint
Archive, Report 2005/280, 2005.

[11] Colin Percival. Cache missing for fun and profit 2005

[12] Werner Schindler. Optimized Timing Attacks against
Public Key Cryptosystems. Statistics and Decisions,
20:191-210, 2002.

[13] Gaurav Shah, Andres Molina, and Matt Blaze. Key-
boards and Covert Channels. In Proceedings of the
15t" USENIX Security Symposium. August 2006.

[14] Jonathan Trostle. Timing Attacks Against Trusted
Path. In IEEE Symposium on Security and Privacy, pp.
125-134, May 1998.

[15] Jonathan Trostle. Modelling a Fuzzy Time System. In
Journal of Computer Security, v.2, n.4, pp.291-310,
1993.

[16] Trusted Computer System Evaluation Criteria.
United States Department of Defense. DoD Standard
5200.28-STD. December 1985.

[17] Zhenghong Wang and Ruby Lee. Covert and Side
Channels due to Processor Architecture. In 22nd An-
nual Computer Security Applications Conference De-
cember 11-15, 2006.

A. Optimal Strategy for Logon Detection
Channel

Given a password alphabet of size A, a password with
c characters (we assume the characters are distinct for sim-
plicity), and let 7w be a remapping strategy for the adver-
sary. Then we define C(A, ¢,) to be the cost (measured
as number of logons needed) for obtaining the characters in
the password given an alphabet of size A, a password with
c distinct characters, and the strategy 7. Also, C'(X,y) =
min,C(X,y,m). f A = 96, ¢ = 8, and the delay for a
remap caused logon failure is equivalent to the time it takes
for 16 (non-remap failure) logons to be performed, then we
can show that the optimal strategy is to remap one key per
test. (If we decrease the delay time from 16, then we may
obtain a strategy where it is sometimes beneficial to remap
2 keys per test.)

We obtain the equation:

C(Aa ¢, ’/Tr)

= (I1-q <ZPi(C(T7i|K)+C(A—Tac—i))>
+ aC(A—-r,0)

where T, is the strategy that remaps r characters on the
first test, and is optimal for succeeding tests, p; = probabil-
ity of ¢ intersections given that a single intersection occurs,
C(X,y|K) is C(X,y) conditioned on knowledge K from
preceding tests, and o« = (1 —¢/A)(1—¢/(A—1))...(1—
¢/(A —r —1)). Thus « is the probability that none of the
remapped characters is in the password.

The idea behind the proof is that each remap test, using
r keys, divides the set of password characters into two sets,
one with r characters, and one with A — r characters. Thus
induction can be applied. We omit the details due to space
limits.

